Elastic Memory: Bring Elasticity Back to In-Memory Big Data Analytics

May 18, 2015

Byung-Gon Chun Seoul National University (cmslab.snu.ac.kr)

Joint work with Joo Seong Jeong, Woo-Yeon Lee, Yunseong Lee, Youngseok Yang, Brian Cho

Elastic Big Data Analytics Jobs

- MapReduce/DAG jobs execute on a runtime that supports elastic scale-out execution
- Distinct MapReduce/DAG jobs run together on a shared cluster, thus improving utilization
- New types of in-memory data analytics do not fit well to this model
 - The interactive query system does not share resources even when the system is idle

New Types of In-Memory Data Analytics: Interactive Query

The Case for Elasticity: Interactive Query

- Scale-out
 - The workers may spill data to disks when they do not have enough memory resources => expand memory resources to perform in-memory processing
- Scale-in
 - The workers hold on to their resources even while they remain idle during periods without client queries
 shrink resources to mitigate reduced cluster utilization

New Types of In-Memory Data Analytics: Machine Learning

The Case for Elasticity: Machine Learning

- Scale-in
 - The job is communication heavy => shrink the number of machines to reduce communication overheads
- Scale-out
 - The job is computation heavy => allocate more memory in other machines to exploit computation parallelism

Elastic Memory (EM)

- Abstraction that provides "elastic memory" by dynamically expanding and shrinking memory resources and moving memory state
 - Mechanisms for reconfiguring memory resources and state
 - Policies for automating reconfiguration

EM Architecture

State Representation

Primitives for Reconfiguring State

Primitives for Reconfiguring State

Profiling

 Each worker's metric tracker measures local metrics and sends them to the metric manager

• The metric manager aggregates and processes the received metrics

Policies

- Policy = Rules
- Rule = Condition, Actions
- Condition = Function(metrics)
- Action
 - Add <ResourceSpec>
 - Delete <SelectFunc>
 - Resize <SelectFunc> <ResourceSpec>
 - Merge <SelectFunc> <n>
 - Split <SelectFunc> <n>
 - Migrate <SelectFunc1> <SelectFunc2>

Elastic Interactive Query with EM: Unit, Metrics

• Unit: a row of a table

- Metrics
 - Requests for data per second
 - Memory utilization
 - Idle time

— ...

Elastic Interactive Query with EM: Policy

- Rule 1 (scale out)
 <u>Condition</u>: avg(load) > 0.8

 <u>Action</u>: Add(resource-spec)
- Rule 2 (scale in)
 <u>Condition</u>: idle-time > 10 min

 <u>Action</u>: Delete(top(idle-time))

Distributed Machine Learning

- Start by loading data from disk and storing it to memory; access data in memory throughout the job execution
- Iterate
 - The workers run the algorithm independently on its partition of the data
 - The master aggregates the computation results and calculates a model.
 - This model is broadcast to the workers

Elastic Machine Learning with EM: Unit, Metrics

Unit: an independent observation (e.g., a single number, vector, a matrix)

- Metrics
 - Task time per iteration
 - Computation time per iteration
 - Communication time per iteration

Elastic Machine Learning with EM: Policy

• Rule1 (straggler handling)

Condition: *is_straggler*(task-iter-time) Action: Migrate(top1(task-iter-time), bottom1(task-iter-time)

• Rule2 (scale-out)

Condition: *avg*(task-comp-time/task-comm-time) > TH1 Action: Split(top1(task-comp-time/task-comm-time), 2)

• Rule3 (scale-in)

Condition: *avg*(task-comp-time/task-comm-time) < TH2 Action: Merge(bottom2(task-comp-time/task-comm-time), 2)

Elastic Machine Learning Framework

ML Algo	orithms
ML Abst	traction
Optimizer	/Runtime
Elastic Memory	Elastic Comm
Apach	e REEF
	<i>.</i>

(http://reef.apache.incubator.org, SIGMOD 2015)

Current Status

• Building Elastic Memory on Apache REEF

• Building a new Elastic Machine Learning Framework that runs on Elastic Memory

 Exploring SparkSQL-like engines to work with Elastic Memory Thank you! Q & A