
The Most Dangerous Code in the
Browser

Stefan Heule, Devon Rifkin, Alejandro Russo, Deian Stefan

Modern web experience

Modern web experience

Modern web experience

…

Core browser

Evernote

AdBlock
NYTimes Chase

Web apps Extensions

Web app security

• Trust model: malicious code

• Apps are isolated according to same-origin policy

• Apps are constrained to Web APIs (e.g., DOM)

➤ They cannot access arbitrary files, devices, etc.

Core browser

NYTimes Chase

Web APIs

❌

Extension security?

• Extensions need direct access to app DOMs

➤ They modify app style, content, behavior, …

• Extensions need privileged APIs

➤ To fetch/store cross-origin content, to read/modify
history and bookmarks, to create new tabs, etc.

NYTimes AdBlock

Core browser
Privileged APIs

• Trust model: extensions are benign-but-buggy

• Privilege separate extension: core and content

➤ Protects vulnerable extension from malicious apps

• Run extensions with least privilege

➤ Limits damage due to exploits

Chrome extension security model

NYTimes AdBlock

Least privilege via permission system

• Extensions declare necessary permissions 
 

• Users must grant permissions at install time

{
 "name": “AdBlock Plus",
 "version": "2.1.10",
...
 "permissions": [
 "http://*/*", "https://*/*", "contextMenus"
],
...

What does mean?

• Can read and modify data on any site,
regardless of what site you are visiting

• AdBlock must be a special case, right?

➤ 71.6% of top 500 extensions need this privilege!

NYTimes AdBlock

chase.com

What does mean?

• Can read and modify data on any site,
regardless of what site you are visiting

• AdBlock must be a special case, right?

➤ 71.6% of top 500 extensions need this privilege!

NYTimes AdBlock

chase.com

It gets worse with popularity

10

100

1000

10000

100000

1000000

10000000

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

Top n extensions

N
um

be
r

of
 u

se
rs

 (f
ew

 d
ay

s
la

te
r)

Fr
ac

tio
n

th
at

 c
an

 r
ea

d
an

d
ch

an
ge

 …

It gets worse with popularity

10

100

1000

10000

100000

1000000

10000000

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

% of n that can read and change all your data…

Top n extensions

N
um

be
r

of
 u

se
rs

 (f
ew

 d
ay

s
la

te
r)

Fr
ac

tio
n

th
at

 c
an

 r
ea

d
an

d
ch

an
ge

 …

It gets worse with popularity

10

100

1000

10000

100000

1000000

10000000

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

of users

% of n that can read and change all your data…

Top n extensions

N
um

be
r

of
 u

se
rs

 (f
ew

 d
ay

s
la

te
r)

Fr
ac

tio
n

th
at

 c
an

 r
ea

d
an

d
ch

an
ge

 …

It gets worse with popularity

10

100

1000

10000

100000

1000000

10000000

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

of users

% of n that can read and change all your data…

Top n extensions

N
um

be
r

of
 u

se
rs

 (f
ew

 d
ay

s
la

te
r)

Fr
ac

tio
n

th
at

 c
an

 r
ea

d
an

d
ch

an
ge

 …
Removed from Chrome Web Store

Problem with Chrome’s model

• Permission requests are meaningless

➤ Descriptions are broad and context-independent

• Model encourages principle of most privilege

➤ Extensions don’t auto-update if they need more privs

• Threat model is not realistic

➤ Chrome Web Store listed many malicious extensions

➤ Roughly 5% of Google users run malicious extensions

Problem with Chrome’s model

• Permission requests are meaningless

➤ Descriptions are broad and context-independent

• Model encourages principle of most privilege

➤ Extensions don’t auto-update if they need more privs

• Threat model is not realistic

➤ Chrome Web Store listed many malicious extensions

➤ Roughly 5% of Google users run malicious extensions

Problem with Chrome’s model

• Permission requests are meaningless

➤ Descriptions are broad and context-independent

• Model encourages principle of most privilege

➤ Extensions don’t auto-update if they need more privs

• Threat model is not realistic

➤ Chrome Web Store listed many malicious extensions

➤ Roughly 5% of Google users run malicious extensions

New extension-system goals
• Meaningful permission system

➤ Safe behavior should not require permission

➤ Permissions requests should be content-specific

• Model should encourage least privilege

➤ Permissions should be fine-grained

➤ Incentivize safe extensions

• Threat model: extensions may be malicious

➤ Need to also protect user app data from extensions

New extension-system goals
• Meaningful permission system

➤ Safe behavior should not require permission

➤ Permissions requests should be content-specific

• Model should encourage least privilege

➤ Permissions should be fine-grained

➤ Incentivize safe extensions

• Threat model: extensions may be malicious

➤ Need to also protect user app data from extensions

New extension-system goals
• Meaningful permission system

➤ Safe behavior should not require permission

➤ Permissions requests should be content-specific

• Model should encourage least privilege

➤ Permissions should be fine-grained

➤ Incentivize safe extensions

• Threat model: extensions may be malicious

➤ Need to also protect user app data from extensions

How can we do this?

Insight: it is safe for extension to read user data if
it can’t arbitrarily disseminate it

➤ E.g., Google Mail Checker 
 
 
 

➤ Taint extensions according to what it reads

➤ Confine code to protect user’s privacy

Checker

gmail.com

How can we do this?

Insight: it is safe for extension to read user data if
it can’t arbitrarily disseminate it

➤ E.g., Google Mail Checker 
 
 
 

➤ Taint extensions according to what it reads

➤ Confine code to protect user’s privacy

✗Checker

gmail.com

How can we do this?

Insight: it is safe for extension to read user data if
it can’t arbitrarily disseminate it

➤ E.g., Google Mail Checker 
 
 
 

➤ Taint extensions according to what it reads

➤ Confine code to protect user’s privacy

✗Checker

gmail.com

How can we do this?

Insight: it is safe for extension to read user data if
it can’t arbitrarily disseminate it

➤ E.g., Google Mail Checker 
 
 
 

➤ Taint extensions according to what it reads

➤ Confine code to protect user’s privacy

✗Checker

gmail.com

How can we do this?

Insight: it is safe for extension to read user data if
it can’t arbitrarily disseminate it

➤ E.g., Google Mail Checker 
 
 
 

➤ Taint extensions according to what it reads

➤ Confine code to protect user’s privacy

✗Checker

gmail.com

How can we do this?

Insight: it is safe for extension to read user data if
it can’t arbitrarily disseminate it

➤ E.g., Google Mail Checker 
 
 
 

➤ Taint extensions according to what it reads

➤ Confine code to protect user’s privacy

✗Checker

evil.gov
❌

gmail.com

Safely read and modify pages?

Safely read and modify pages?

✗

Safely read and modify pages?

• Idea: tie extension script with app page

➤ Impose at least same-origin policy on extension  
 
 

• Challenge: read data from page and leak it by
injecting content into page’s DOM

• Solution: taint extension, write to isolated DOM

➤ Loads due to extension restricted: confined!

NYTimes AdBlock

chase.com
❌

Safely read and modify pages?

• Idea: tie extension script with app page

➤ Impose at least same-origin policy on extension  
 
 

• Challenge: read data from page and leak it by
injecting content into page’s DOM

• Solution: taint extension, write to isolated DOM

➤ Loads due to extension restricted: confined!

NYTimes AdBlock

chase.com
❌

Confinement: safe, too restricting

• Challenge: extensions need to “leak” data

➤ E.g., Evernote is used to save URL, page, etc.

➤ Reading DOM taints extension:

• Solution: declassification via sharing menu API

NYTimes Evernote

evernote.com
❌

NYTimes

Confinement: safe, too restricting

• Challenge: extensions need to “leak” data

➤ E.g., Evernote is used to save URL, page, etc.

➤ Reading DOM taints extension:

• Solution: declassification via sharing menu API

NYTimes Evernote

evernote.com
❌

NYTimes

Confinement: safe, too restricting

• Challenge: extensions need to “leak” data

➤ E.g., Evernote is used to save URL, page, etc.

➤ Reading DOM taints extension:

• Solution: declassification via sharing menu API

NYTimes Evernote

evernote.com
❌

NYTimes

Confinement: safe, too restricting

• Challenge: extensions need to “leak” data

➤ E.g., Evernote is used to save URL, page, etc.

➤ Reading DOM taints extension:

• Solution: declassification via sharing menu API

NYTimes Evernote

evernote.com
❌

NYTimes

Confinement: safe, too restricting

• Challenge: extensions need to “leak” data

➤ E.g., Evernote is used to save URL, page, etc.

➤ Reading DOM taints extension:

• Solution: declassification via sharing menu API

NYTimes Evernote

evernote.com
❌

NYTimes Evernote

Confinement: safe, too restricting

• Challenge: extensions need to “leak” data

➤ E.g., Evernote is used to save URL, page, etc.

➤ Reading DOM taints extension:

• Solution: declassification via sharing menu API

NYTimes Evernote

evernote.com
❌

NYTimes Evernote

evernote.com

Usable confinement via APIs

• Crypto API

➤ Convert tainted values to encrypted blobs (LastPass)

• Declarative CSS API

➤ Taint-oblivious styling changes

• Network filtering API

➤ Allow/deny network requests given regex (AdBlock)

• …

How can permissions be more
meaningful?

• Many extensions can  
be safe by default

➤ Confinement protects  
user privacy

➤ Incentivize developers by making warnings rare

• To capture remaining models: need permissions

➤ Use declassification as guide for informing
messages: what data is being “leaked”?

- E.g., URLS, page location, whole page, etc.

How can permissions be more
meaningful?

• Many extensions can  
be safe by default

➤ Confinement protects  
user privacy

➤ Incentivize developers by making warnings rare

• To capture remaining models: need permissions

➤ Use declassification as guide for informing
messages: what data is being “leaked”?

- E.g., URLS, page location, whole page, etc.

Summary

• Extensions: most dangerous code in the browser

➤ Third-party, unaudited, highly-privileged JavaScript

• Rethink extension security systems

➤ Need to protect user privacy from extensions

➤ Make user permissions requests rare and clear

• One direction: confinement + new APIs

➤ Captures many extensions as “safe”, makes permission
requests rare

