
l l d h d lFault Tolerance and the Five-Second Rule

Ang Chen Hanjun Xiao

Andreas Haeberlen Linh Thi Xuan Phan

Department of Computer and Information Science
University of Pennsylvania

A. Haeberlen
1

HotOS XV (May 18, 2015)

F lt i Di t ib t d S tFaults in Distributed Systems

Balance: $100

Transfer $9 to Marcos

New balance: $1

Nodes in a distributed system can fail

bank.com

 Nodes in a distributed system can fail
 Example: Online banking

The consequences can be serious The consequences can be serious
 Example: Monetary loss

Solution: Use fault tolerance techniques
A. Haeberlen

 Solution: Use fault-tolerance techniques
2

HotOS XV (May 18, 2015)

F lt i R l LifFaults in Real Life

$9, please!

Your change:

Transactions in real life can fail too! Transactions in real life can fail, too!
 Example: Paying with cash at the checkout counter

Failures can have bad consequences Failures can have bad consequences
 Example: Getting shortchanged

S l ti U f lt t l t h i ?
A. Haeberlen

 Solution: Use fault-tolerance techniques?
3

HotOS XV (May 18, 2015)

O li ffliOnline vs. offline

 How do we do handle this in the real world?
 No masking: The transaction is allowed to fail initially
 Detection: Participants check the results
 Recovery: Detected failures are fixed if possible

Timeliness: Checking happens quickly (to limit damage) Timeliness: Checking happens quickly (to limit damage)

 Can we do the same in distributed systems? Can we do the same in distributed systems?

 Our proposal: Bounded time recovery (BTR) Our proposal: Bounded-time recovery (BTR)
 Intuition: When a node fails, the system may make mistakes

for a limited time (e.g., 100ms), but then it recovers

A. Haeberlen

(g ,),
 Should be a provable property - not just best-effort!

4
HotOS XV (May 18, 2015)

Wh ld BTR b ffi i t?When would BTR be sufficient?

 Not all systems can use BTR
 Example: Systems where failures are

i di l f limmediately fatal

But there are systems that But there are systems that
could benefit!

Example: Cyber physical systems Example: Cyber-physical systems
 Physical part often has some inertia
 Control algorithms can often tolerate Control algorithms can often tolerate

some mistakes
 Time bound is key: Fixing problems

'eventually' is not enough!

A. Haeberlen

'eventually' is not enough!

5
HotOS XV (May 18, 2015)

Wh t ld i f BTR?What could we gain from BTR?

 Opportunity #1: Lower cost
 Detection is cheaper than masking
 Particularly important for CPS

O t it #2 Ti i t Opportunity #2: Timing guarantees
 Even most BFT solutions cannot guarantee timely

responses when the system is under attackresponses when the system is under attack

 Opportunity #3: Fine-grained responsesOpportunity #3: Fine grained responses
 Typical fault-tolerance guarantee is "all or nothing"
 BTR can recover failures in many ways, e.g., by dropping

A. Haeberlen

less important tasks or by adjusting the service level

6
HotOS XV (May 18, 2015)

O tliOutline

 Motivation
 Idea: Bounded-Time Recovery (BTR)Idea: Bounded Time Recovery (BTR)

 Pros and Cons of BTR

 BTR defined NEXT BTR defined
 Solution sketch

Summary Summary

A. Haeberlen
7

HotOS XV (May 18, 2015)

A d d fi iti
B d d ti

A proposed definition
 Bounded-time recovery:

 A system offers BTR with a time bound R if its outputs are
correct in any interval [t t] such that no fault hascorrect in any interval [t1,t2] such that no fault has
manifested in [t1-R,t2]

Fault

TimeR R
RSystem correct

 Some special cases:
R 0: Similar to BFT (but with timing guarantees!) R=0: Similar to BFT (but with timing guarantees!)

 R=: Similar to self-stabilization
 Small values of R are the most interesting (and the hardest)

A. Haeberlen

 Small values of R are the most interesting (and the hardest)

8
HotOS XV (May 18, 2015)

Wh t ti d d?What assumptions do we need?

 BTR talks about time  Need synchrony!
 Must have strong bounds on execution times
 Must have strong bounds on message delays

Thi i bl (i th CPS d i) This is reasonable (in the CPS domain)
 WCETs are often known or can be derived

Networks have FEC and support bandwidth reservations Networks have FEC and support bandwidth reservations

 Can we assume Byzantine faults? Can we assume Byzantine faults?
 Real, growing concern for CPS!
 Qualified yes: Some hardware features needed

A. Haeberlen

 Qualified yes: Some hardware features needed
 Example: Protection against Babbling Idiots -- e.g., bus guardians

9
HotOS XV (May 18, 2015)

S l ti k t h Pl i
A BA

Solution sketch: Planning
B

Data flow
A BA B

Tasks

C D
Plan for "B faulty" mode

C D
Plan for "no faults" mode

 Ingredient #1: Planner
System can run in several modes has a (static) plan System can run in several modes, has a (static) plan
for what to run where in each mode

 Online vs. offline planning
 Several interesting challenges (see paper for details)

 Example: Inter-mode dependencies; connections to game theory
 Example: Distributed mixed-mode scheduling

A. Haeberlen

 Example: Distributed mixed mode scheduling
 Interesting opportunites, e.g., fine-grained responses

10
HotOS XV (May 18, 2015)

S l ti k t h D t tiSolution sketch: Detection

 Ingredient #2: Fault detector
 Need to detect (at runtime) when a node misbehaves
 Can we use PeerReview [SOSP’07] for this?
 No - PeerReview is for asynchronous systems!

A
 Challenge: Detecting temporal faults

 Example: Faulty node might send the

A B

 Example: Faulty node might send the
right message at the wrong time

 Challenge: Bounding time to detection
 Adversary can ‘win’ simply by delaying

d t ti (d th) f t l !

A. Haeberlen

detection (and thus recovery) for too long!

11
HotOS XV (May 18, 2015)

S l ti k t h RSolution sketch: Recovery

 Ingredient #3: Evidence distributor
 Need to convince other nodes that a fault really exists

Ad i ht t t f th t b ti Adversary might try to confuse the system by reporting
non-existent faults

 PeerReview-style protocols can provide evidence of faults
 Challenge: Needs resources, new kinds of evidence

 Ingredient #4: Mode switcher
 Each node needs to switch to the new planac ode eeds to s tc to t e e p a
 Involves transferring state, starting/terminating tasks

 Some existing work on mode-change protocols
S i i l l b l t t b d d

A. Haeberlen

 Surprisingly, global agreement may not be needed

12
HotOS XV (May 18, 2015)

P tti it ll t thPutting it all together
B is

A B
faulty!

✖

C D

Evidence
✔

TimeR

 Planning: Decide what to run where in each mode
 Detection: Nodes audit each other to look for faults
 Evidence: Nodes prove existence of detected faults

A. Haeberlen

 Mode change: System reconfigures
13

HotOS XV (May 18, 2015)

SSummary

 We propose Bounded-Time Recovery (BTR)
 New approach to fault tolerance
 System is allowed to produce wrong outputs after a fault,

but only for a limited time

Case study: Cyber physical systems Case study: Cyber-physical systems
 Support the additional assumptions that BTR requires
 BTR could offer lower cost fine-grained responses to faults BTR could offer lower cost, fine-grained responses to faults

 Interesting research challenges
Unusual scheduling problems new detection protocols Unusual scheduling problems, new detection protocols, ...

Questions?

A. Haeberlen
14

HotOS XV (May 18, 2015)

Questions?

