Broom: sweeping out Garbage

Collection from Big Data systems

lonel Gog

Jana Giceva
Malte Schwarzkopf

Kapil Vaswani
Dimitrios Vytiniotis

Ganesan Ramalingam
Manuel Costa
Derek G. Murray
Steven Hand
Michael Isard

-i- Microsoft
Research

Systems @ ETH ziricy

Meet Kermit from Sesame, Inc.
e Kermit runs:

o batch computations
o graph computations

o Incremental computations

e He uses stateful dataflow systems
(e.g., Naiad, Dryad, Spark)

Incremental strongly connected components

Sync barrier GC pauses
24 A -
22 / -
20 /l
O 18 / (=
/ N—"
$ % 16 (/ PR
= 8 14 — <
L
s £ 12 K~ s
E 5 10 .
= 8
< 6
4
2
0 - !
200 300 400 500

Experiment time [ms]

Properties of dataflow systems

Run as a collection of actors

Communicate via message passing

Well-defined communication points

Dictionary<Time, Dictionary<K, V>> state;

void OnReceive(Message msg, Time time)
// Update state...
var key = keySelector(msg);
state[time][key] = Aggregate(state[time][key], msQg)

void OnNotify(Time time)
Send(outgoingMsg);

/I Clear state for time...
state.Remove(time);

oscar the 3rcuch:
\n-house

Gar‘oaﬁe Collection
QXPQV’r

Throughput vs. pause time
A

Pause time

Stop-the-world

Concurrent

Ref counting

Real-time

Throughput

Common language runtime GC

Weak generational hypothesis:
“‘most objects die young’

Large objects [T

10

Common language runtime GC

Weak generational hypothesis:
“most objects die young”

Generation 0
Generation 2 [@IISIIOIO o
Large objects [TIT@R T T

11

Common language runtime GC

Weak generational hypothesis:
“most objects die young”

Generation 0 [@ 171110 1]
Generation 1
Generation 2

Large objects [T

12

Common language runtime GC

Weak generational hypothesis:
“most objects die young”

Generation 0 Collect
Generation 2 [SISISISITISISIIIIST
Large objects [T @ T

13

- s A
ol L I.
B 1. i
'\&l-'a-’ 37 ¢ k

Common language runtime GC g,
Weak generational hypothesisTN =&
‘most objects die young’

Does not hold in stateful dataflows!
(e.g. Naiad, Dryad, Spark)

14

Nhg oniy co-locate
objects based on

Flexible object co-location

' !

16

Throughput vs. pause time
A

Pause time

Stop-the-world

Concurrent

Ref counting

Real-time

Throughput

17

Vmalloc: A General and Efficie

;Axll()(i‘dt()l' KIEM-PHONG VO

ATET Laboratories 180 Park Avenue, Florham Park, N.

Region-Based Memory Management

Mads Tofte

IAY & & L O [el Lo L O L

Region-Based Memory Management in Cyclone -

Dan Grossman
Michael Hicks

Computer Science Department
Cornell University
Ithaca, NY 14853

{danieljg,jgm,mhicks,wangyl,jcheney}@cs.cornell.edu

ABSTRACT

Cyclone is a type-safe programming language derived from
C. The primary design goal of Cyclone is to let program-
mers control data representation and memory management
without sacrificing type-safety. In this paper, we focus on

Greg Morrisett
Yanling Wang

Trevor Jimf
James Cheney

TAT&T Labs Research
180 Park Avenue
Florham Park, NJ 07932

trevor@research.att.com

control over data representation (e.g., field layout) and re-
source management (e.g., memory management). The de
facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of danger-
ous — and extremely common — safety violations, such as

AL A h} L - | L

1. e - | .
oLLUCL L1150 *od

void f
{
Regi

o studies of and algo-
rased on garbage col- for
deallocation. An al- inl
nemory management, o
t has not been well- }

Region-based memory management systems structure mem-
ory by grouping objects in regions under program control.
Memory is reclaimed by deleting regions, freeing all objects
stored therein. Our compiler for C with regions, RC, pre-
vents unsafe region deletions by keeping a count of refer-
ences to each region. Using type annotations that make the
structure of a program’s regions more explicit, we reduce the
overhead of reference counting from a maximum of 27% to
a maximum of 11% on a suite of realistic benchmarks. We
generalise these annotations in a region type system whose

PSR L T A A SR T b PR T A (N S Y

struct finfo *sa
} *rl, *last = NUL
region r = newregi

while (...) { /* b
rl = ralloc(r, s
rl->data = rallo
... /* £fill in d
rl->next = 1q§§;

}

Region-based memory management

region 1 lifetime
region 2 ownership
region 3 type

19

The goods and bads

=
=

Decrease time spent GCing

Reduce runtime

Difficult to write programs using regions

Easy to leak memory

Trades memory usage for throughput

What’s different?

We target data processing frameworks

e Stateful dataflows run as a collection of actors
e Communication done via message-passing
e Many objects have identical lifetime

e Users are not exposed to the
underlying implementation

Memory usage pattern

[[Transferable }

Scratchpad

Overview of Broom
e Three types of regions:

o Actor-scoped
o Transferable

o Temporary

e Implemented in Bartok,
a research compiler from MSR

Aggregate actor

public class AggregateActor
Dictionary<Time, Dictionary<K, V>> state;

void OnReceive(Message msg, Time time)
iIf (state[time] == null)

state[time] = new Dictionary<K,V>();

var key = keySelector(msg);
state[time][key] = Aggregate(state[time][key], entry)

void OnNotify(Time time)

Send(outgoingMsg);

Actor-scoped regions

public class AggregateActor
Dictionary<Time, Dictionary<K, V>> state;

void OnReceive(Message msg, Time time)
iIf (state[time] == null)

Lifetime is identical to the actor’s lifetime

Used to store actor’s fields

Can be garbage collected

Transferable regions

Lifetime can span over the lifetime of multiple actors

void OnReceive(Message msg, Time time)
if (state[time] == null

Used to pass data among actors

var key = keySelector(msg);
state[time][key] = Aggregate(state[time][key], entry)

A region can be accessed by only one actor at a time

Temporary regions

Lifetime does not span over multiple methods

void OnReceive(Message msg, Time time)
iIf (state[time] == null)
state[time] = new Dictionary<K,V>();

Used to store temporary data

They are not garbage collected

How well does it
work

Naiad emulator

e Actor over 40 Naiad time epochs

e 500k-600k documents per epoch

e 10-20 new author entries per epoch

How well does it work?

Lower is better

Runtime relative to GC

10%

0%

-10%

-20%

-30%

-40%

30

.

Select: stateless actor

13% reduction

Lower is better

Runtime relative to GC

0%

-10%

-20%

-30%

-40%

T

[

Select
119s

31

.

Aggregate: stores partial aggregation results

20% reduction

Lower is better

Runtime relative to GC

[

-30%

-40% . '
Select Aggregate
119s 175s

32

Join: highly stateful actor

Lower is better

Runtime relative to GC

0%

-10%

-20%

0% 36% reduction

-40% . '
Select Aggregate Join
119s 175s 37s

33

Summary and future work
e Regions work well for stateful dataflow systems

e Preliminary results show 11-36% runtime
reduction

e Future work: Type safety and automatic region
usage inference

Backup slides

Spark® Mys

Project Tungsten: Bringing Spark Closer to Bare Metal

In a previous blog post, we looked back and surveyed performance improvements made to Spark in
the past year. In this post, we look forward and share with you the next chapter, which we are calling
Project Tungsten. 2014 witnessed Spark setting the world record in large-scale sorting and saw major
improvements across the entire engine from Python to SQL to machine learning. Performance
optimization, however, is a never ending process.

Project Tungsten will be the largest change to Spark’s execution engine since the project’s inception. It
focuses on substantially improving the efficiency of memory and CPU for Spark applications, to push
performance closer to the limits of modern hardware. This effort includes three initiatives:

1. Memory Management and Binary Processing: leveraging application semantics to manage
memory explicitly and eliminate the overhead of JVM object model and garbage collection
2. Cache-aware computation: algorithms and data structures to exploit memory hierarchy 36

2 Code neneration: 11cinc code ceneration to evploit modern comnilere and CPIL e

Allowed points-to relationship

-

4)

Temporary —

- J

-

4)

Transferable

- J

37

Naiad primer

(message, time)

38

Naiad primer

OnRecv(message, time)

39

Naiad primer

40

Naiad primer

OnNotify(time)

OnRecv(message, time)

OnRecv(message, time)

41

Minor vs. major collections

Collections

2000
1500
1000

500

Minor Major
| | I | | 80

% & 0 > 0
NEH L2
Young generation heap size [MB; log-]

BmTPC-HQ17 |
Bl shopper

—

" 0o R

42

Percentage of time spent GCing

- N W B O
o o o O O

Time spent on GC [%]

o

|
¥ —§ TPC-HQ17
&— shopper

4 8 16 32 64 128 256
Young generation heap size [MB; log:]

43

