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Meet Kermit from Sesame, Inc.

● Kermit runs:

○ batch computations

○ graph computations

○ incremental computations

● He uses stateful dataflow systems
(e.g., Naiad, Dryad, Spark)

2



Incremental strongly connected components

3

100          200           300           400           500
                    Experiment time [ms]
                      

GC pausesSync barrier
4 

m
ac

hi
ne

s



Run as a collection of actors

Communicate via message passing

Well-defined communication points
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Properties of dataflow systems



public class AggregateActor

  Dictionary<Time, Dictionary<K, V>> state;

  void OnReceive(Message msg, Time time) 
     // Update state...
     var key = keySelector(msg);
     state[time][key] = Aggregate(state[time][key], msg)

  void OnNotify(Time time)
     Send(outgoingMsg);
     // Clear state for time...
     state.Remove(time);
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Oscar the grouch:   
In-house

Garbage Collection 
expert
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Throughput vs. pause time
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Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”
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Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”

Collect

Does not hold in stateful dataflows!
(e.g. Naiad, Dryad, Spark)
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Why only co-locate 
objects based on 

their age?
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Flexible object co-location
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Throughput vs. pause time
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Region-based memory management
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The goods and bads

Decrease time spent GCing

Reduce runtime

Difficult to write programs using regions

Easy to leak memory

Trades memory usage for throughput
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What’s different?

● Stateful dataflows run as a collection of actors

● Communication done via message-passing

● Many objects have identical lifetime

● Users are not exposed to the
underlying implementation

We target data processing frameworks
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Memory usage pattern

Mutable stateImmutable

Transferable

Scratchpad
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Overview of Broom

● Three types of regions:

○ Actor-scoped

○ Transferable

○ Temporary

● Implemented in Bartok,
a research compiler from MSR
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Aggregate actor
public class AggregateActor
  Dictionary<Time, Dictionary<K, V>> state;

  void OnReceive(Message msg, Time time) 
     if (state[time] == null)
        state[time] = new Dictionary<K,V>();

     var key = keySelector(msg);
     state[time][key] = Aggregate(state[time][key], entry)

  void OnNotify(Time time)
     // Clear state for time...
     Send(outgoingMsg); 24



Actor-scoped regions
public class AggregateActor
  Dictionary<Time, Dictionary<K, V>> state;

  void OnReceive(Message msg, Time time) 
     if (state[time] == null)
        state[time] = new Dictionary<K,V>();

     var key = keySelector(msg);
     state[time][key] = Aggregate(state[time][key], entry)

  void OnNotify(Time time)
     // Clear state for time...
     Send(outgoingMsg);

Lifetime is identical to the actor’s lifetime

Used to store actor’s fields

Can be garbage collected
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Transferable regions
public class AggregateActor
  Dictionary<Time, Dictionary<K, V>> state;

  void OnReceive(Message msg, Time time) 
     if (state[time] == null)
        state[time] = new Dictionary<K,V>();

     var key = keySelector(msg);
     state[time][key] = Aggregate(state[time][key], entry)

  void OnNotify(Time time)
     // Clear state for time...
     Send(outgoingMsg);

Lifetime can span over the lifetime of multiple actors

A region can be accessed by only one actor at a time

Used to pass data among actors
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Temporary regions
public class AggregateActor
  Dictionary<Time, Dictionary<K, V>> state;

  void OnReceive(Message msg, Time time) 
     if (state[time] == null)
        state[time] = new Dictionary<K,V>();

     var key = keySelector(msg);
     state[time][key] = Aggregate(state[time][key], entry)

  void OnNotify(Time time)
     // Clear state for time...
     Send(outgoingMsg);

They are not garbage collected

Used to store temporary data

Lifetime does not span over multiple methods
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How well does it 
work?

28



Naiad emulator

● Actor over 40 Naiad time epochs

● 500k-600k documents per epoch

● 10-20 new author entries per epoch
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How well does it work?
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How well does it work?

Select

13% reduction

Select: stateless actor
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How well does it work?

Select Aggregate

20% reduction

Aggregate: stores partial aggregation results
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How well does it work?

Select Aggregate Join

36% reduction

Join: highly stateful actor
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● Regions work well for stateful dataflow systems

● Preliminary results show 11-36% runtime 
reduction

● Future work: Type safety and automatic region 
usage inference

Summary and future work

@ICGog
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Backup slides
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Allowed points-to relationship
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Naiad primer

Actor 1

Actor 3

Actor 2
(message, time)
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Naiad primer

Actor 1

Actor 3

Actor 2
OnRecv(message, time)
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Naiad primer

Actor 1

Actor 3

Actor 2
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Naiad primer

Actor 1

Actor 3

Actor 2

OnRecv(message, time)

OnRecv(message, time)

OnNotify(time)

41



Minor vs. major collections
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Percentage of time spent GCing
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