
Broom: sweeping out Garbage
Collection from Big Data systems

Ionel Gog
Jana Giceva

Malte Schwarzkopf
Kapil Vaswani

Dimitrios Vytiniotis
Ganesan Ramalingam

Manuel Costa
Derek G. Murray

Steven Hand
Michael Isard

1

Meet Kermit from Sesame, Inc.

● Kermit runs:

○ batch computations

○ graph computations

○ incremental computations

● He uses stateful dataflow systems
(e.g., Naiad, Dryad, Spark)

2

Incremental strongly connected components

3

100 200 300 400 500
 Experiment time [ms]

GC pausesSync barrier
4

m
ac

hi
ne

s

Run as a collection of actors

Communicate via message passing

Well-defined communication points

4

Properties of dataflow systems

public class AggregateActor

 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 // Update state...
 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], msg)

 void OnNotify(Time time)
 Send(outgoingMsg);
 // Clear state for time...
 state.Remove(time);

5

public class AggregateActor

 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 // Update state...
 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], msg)

 void OnNotify(Time time)
 Send(outgoingMsg);
 // Clear state for time...
 state.Remove(time);

6

public class AggregateActor

 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 // Update state...
 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], msg)

 void OnNotify(Time time)
 Send(outgoingMsg);
 // Clear state for time...
 state.Remove(time);

7

Oscar the grouch:
In-house

Garbage Collection
expert

8

Throughput vs. pause time

Throughput

Pa
us

e
tim

e
Stop-the-world

Concurrent

Ref counting

Real-time Ideal

9

Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”

10

Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”

11

Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”

12

Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”

Collect

13

Common language runtime GC

Generation 0

Generation 1

Generation 2

Large objects

Weak generational hypothesis:
“most objects die young”

Collect

Does not hold in stateful dataflows!
(e.g. Naiad, Dryad, Spark)

14

Why only co-locate
objects based on

their age?

15

Flexible object co-location

16

lifetime

ownership

type

Throughput vs. pause time

Throughput

Pa
us

e
tim

e
Stop-the-world

Concurrent

Ref counting

Real-time

17

???

18

Region-based memory management

19

lifetime

ownership

type

region 1

region 2

region 3

The goods and bads

Decrease time spent GCing

Reduce runtime

Difficult to write programs using regions

Easy to leak memory

Trades memory usage for throughput

20

What’s different?

● Stateful dataflows run as a collection of actors

● Communication done via message-passing

● Many objects have identical lifetime

● Users are not exposed to the
underlying implementation

We target data processing frameworks

21

Memory usage pattern

Mutable stateImmutable

Transferable

Scratchpad

22

Overview of Broom

● Three types of regions:

○ Actor-scoped

○ Transferable

○ Temporary

● Implemented in Bartok,
a research compiler from MSR

23

Aggregate actor
public class AggregateActor
 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 if (state[time] == null)
 state[time] = new Dictionary<K,V>();

 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], entry)

 void OnNotify(Time time)
 // Clear state for time...
 Send(outgoingMsg); 24

Actor-scoped regions
public class AggregateActor
 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 if (state[time] == null)
 state[time] = new Dictionary<K,V>();

 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], entry)

 void OnNotify(Time time)
 // Clear state for time...
 Send(outgoingMsg);

Lifetime is identical to the actor’s lifetime

Used to store actor’s fields

Can be garbage collected
25

Transferable regions
public class AggregateActor
 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 if (state[time] == null)
 state[time] = new Dictionary<K,V>();

 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], entry)

 void OnNotify(Time time)
 // Clear state for time...
 Send(outgoingMsg);

Lifetime can span over the lifetime of multiple actors

A region can be accessed by only one actor at a time

Used to pass data among actors

26

Temporary regions
public class AggregateActor
 Dictionary<Time, Dictionary<K, V>> state;

 void OnReceive(Message msg, Time time)
 if (state[time] == null)
 state[time] = new Dictionary<K,V>();

 var key = keySelector(msg);
 state[time][key] = Aggregate(state[time][key], entry)

 void OnNotify(Time time)
 // Clear state for time...
 Send(outgoingMsg);

They are not garbage collected

Used to store temporary data

Lifetime does not span over multiple methods

27

How well does it
work?

28

Naiad emulator

● Actor over 40 Naiad time epochs

● 500k-600k documents per epoch

● 10-20 new author entries per epoch

29

How well does it work?

30

Lo
w

er
 is

 b
et

te
r

How well does it work?

Select

13% reduction

Select: stateless actor

31119s

Lo
w

er
 is

 b
et

te
r

How well does it work?

Select Aggregate

20% reduction

Aggregate: stores partial aggregation results

32119s 175s

Lo
w

er
 is

 b
et

te
r

How well does it work?

Select Aggregate Join

36% reduction

Join: highly stateful actor

3337s119s 175s

Lo
w

er
 is

 b
et

te
r

● Regions work well for stateful dataflow systems

● Preliminary results show 11-36% runtime
reduction

● Future work: Type safety and automatic region
usage inference

Summary and future work

@ICGog
34

Backup slides

35

36

Allowed points-to relationship

37

Naiad primer

Actor 1

Actor 3

Actor 2
(message, time)

38

Naiad primer

Actor 1

Actor 3

Actor 2
OnRecv(message, time)

39

Naiad primer

Actor 1

Actor 3

Actor 2

40

Naiad primer

Actor 1

Actor 3

Actor 2

OnRecv(message, time)

OnRecv(message, time)

OnNotify(time)

41

Minor vs. major collections

42

Percentage of time spent GCing

43

