Broom: sweeping out Garbage

Collection from Big Data systems
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Meet Kermit from Sesame, Inc.
e Kermit runs:

o batch computations
o graph computations

o Incremental computations

e He uses stateful dataflow systems
(e.g., Naiad, Dryad, Spark)




Incremental strongly connected components

Sync barrier GC pauses
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Properties of dataflow systems

Run as a collection of actors

Communicate via message passing

Well-defined communication points




Dictionary<Time, Dictionary<K, V>> state;




void OnReceive(Message msg, Time time)
// Update state...
var key = keySelector(msg);
state[time][key] = Aggregate(state[time][key], msQg)




void OnNotify(Time time)
Send(outgoingMsg);

/I Clear state for time...
state.Remove(time);
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Throughput vs. pause time
A

Pause time

Stop-the-world

Concurrent

Ref counting

Real-time

Throughput



Common language runtime GC

Weak generational hypothesis:
“‘most objects die young’

Large objects [T
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Common language runtime GC
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Common language runtime GC
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Common language runtime GC

Weak generational hypothesis:
“most objects die young”
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Weak generational hypothesisTN =&
‘most objects die young’

Does not hold in stateful dataflows!
(e.g. Naiad, Dryad, Spark)
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Flexible object co-location
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Throughput vs. pause time
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Vmalloc: A General and Efficie
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Region-Based Memory Management
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ABSTRACT

Cyclone is a type-safe programming language derived from
C. The primary design goal of Cyclone is to let program-
mers control data representation and memory management
without sacrificing type-safety. In this paper, we focus on
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control over data representation (e.g., field layout) and re-
source management (e.g., memory management). The de
facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of danger-
ous — and extremely common — safety violations, such as
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Region-based memory management systems structure mem-
ory by grouping objects in regions under program control.
Memory is reclaimed by deleting regions, freeing all objects
stored therein. Our compiler for C with regions, RC, pre-
vents unsafe region deletions by keeping a count of refer-
ences to each region. Using type annotations that make the
structure of a program’s regions more explicit, we reduce the
overhead of reference counting from a maximum of 27% to
a maximum of 11% on a suite of realistic benchmarks. We
generalise these annotations in a region type system whose
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struct finfo *sa
} *rl, *last = NUL
region r = newregi

while (...) { /* b
rl = ralloc(r, s
rl->data = rallo
... /* £fill in d
rl->next = 1q§§;

}



Region-based memory management

region 1 lifetime
region 2 ownership
region 3 type
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The goods and bads
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Decrease time spent GCing

Reduce runtime

Difficult to write programs using regions

Easy to leak memory

Trades memory usage for throughput




What’s different?

We target data processing frameworks

e Stateful dataflows run as a collection of actors
e Communication done via message-passing
e Many objects have identical lifetime

e Users are not exposed to the
underlying implementation




Memory usage pattern

[[Transferable }
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Overview of Broom
e Three types of regions:

o Actor-scoped
o Transferable

o Temporary

e Implemented in Bartok,
a research compiler from MSR




Aggregate actor

public class AggregateActor
Dictionary<Time, Dictionary<K, V>> state;

void OnReceive(Message msg, Time time)
iIf (state[time] == null)

state[time] = new Dictionary<K,V>();

var key = keySelector(msg);
state[time][key] = Aggregate(state[time][key], entry)

void OnNotify(Time time)

Send(outgoingMsg);



Actor-scoped regions

public class AggregateActor
Dictionary<Time, Dictionary<K, V>> state;

void OnReceive(Message msg, Time time)
iIf (state[time] == null)

Lifetime is identical to the actor’s lifetime

Used to store actor’s fields

Can be garbage collected




Transferable regions

Lifetime can span over the lifetime of multiple actors

void OnReceive(Message msg, Time time)
if (state[time] == null

Used to pass data among actors

var key = keySelector(msg);
state[time][key] = Aggregate(state[time][key], entry)

A region can be accessed by only one actor at a time




Temporary regions

Lifetime does not span over multiple methods

void OnReceive(Message msg, Time time)
iIf (state[time] == null)
state[time] = new Dictionary<K,V>();

Used to store temporary data

They are not garbage collected




How well does it
work




Naiad emulator

e Actor over 40 Naiad time epochs

e 500k-600k documents per epoch

e 10-20 new author entries per epoch




How well does it work?

Lower is better

Runtime relative to GC
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Select: stateless actor

13% reduction

Lower is better

Runtime relative to GC
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Aggregate: stores partial aggregation results

20% reduction

Lower is better

Runtime relative to GC
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Join: highly stateful actor

Lower is better

Runtime relative to GC
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Summary and future work
e Regions work well for stateful dataflow systems

e Preliminary results show 11-36% runtime
reduction

e Future work: Type safety and automatic region
usage inference




Backup slides



Spark® Mys

Project Tungsten: Bringing Spark Closer to Bare Metal

In a previous blog post, we looked back and surveyed performance improvements made to Spark in
the past year. In this post, we look forward and share with you the next chapter, which we are calling
Project Tungsten. 2014 witnessed Spark setting the world record in large-scale sorting and saw major
improvements across the entire engine from Python to SQL to machine learning. Performance
optimization, however, is a never ending process.

Project Tungsten will be the largest change to Spark’s execution engine since the project’s inception. It
focuses on substantially improving the efficiency of memory and CPU for Spark applications, to push
performance closer to the limits of modern hardware. This effort includes three initiatives:

1. Memory Management and Binary Processing: leveraging application semantics to manage
memory explicitly and eliminate the overhead of JVM object model and garbage collection
2. Cache-aware computation: algorithms and data structures to exploit memory hierarchy 36

2 Code neneration: 11cinc code ceneration to evploit modern comnilere and CPIL e



Allowed points-to relationship
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Naiad primer

(message, time)
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Naiad primer

OnRecv(message, time)
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Naiad primer
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Naiad primer

OnNotify(time)

OnRecv(message, time)

OnRecv(message, time)
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Minor vs. major collections

Collections
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Percentage of time spent GCing
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