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CVE-2013-7373 Android before 4.4 does not properly 2~——=wr seeding of the
OpenSSL PRNG, which makes it easier for attackers to defeat
cryptographic protection mechanisms by leveraging use of the

PRNG within multiple applications.
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15-0800 The PRNG implementation in the DNS resolver in Mozi

Firefox DNS

{aka Fennec) before 37.0 on Android does not propery o=
random numbers for query 1D values and UDP scwsel pores, which

makes it easier for remote attackers to spoof DNS responses by
guessing these numbers, a related issue to CVE-2012-2808.
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Why so many bugs?

Randomness subsystems have:
» Buggy design

* Error-prone APIs 3
ee paper
» Misleading documentation

Good news: The OS can
be part of the solution!



What is entropy?

Password has k bits of It takes A around 2%
[guessing] entropy & guesses to guess
w.r.t. an adversary A your password

Why do we need it?

» Cryptographic secrets
« ASLR

 DNS source ports

« Password salts
e Etc.
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Once the OS has accumulated enough entropy, it
will never “run out” of entropy
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Great! But what should
the OS do before it has
256 bits in the pool?

After first boot...



State of the Art:
Entropy Estimation
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State of
the Art
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Entropy is a function of
adversary’s knowledge

Estimate could be: 256 bits
Reality could be:
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[Kelsey et al., SAC‘00]
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State of Entropy
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Reading many bytes from /dev/random can drive
down entropy estimate and starve other processes

Kernel Space

.

“‘random” values!

[CVE-2013-1445, CVE-2013-3599,
CVE-2014-0016, CVE-2014-0017]
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Our Proposal
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Our Proposal

Option 1: Strong Assumptions

« Assume low-order bit of “RDRAND” has
one bit of entropy

« Easy! Just gather 256 samples, use them
to seed a PRG

What happens if your
assumption is wrong?
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Our Proposal

Option 2: “Best-effort” entropy accumulation
* Never estimate

* Never block
[Barak-Halevi CCS’05] [Dodis et al. CCS’13] [Kelsey et al., SAC‘00]

» Any process can write into OS pool
» Per-process pools
[See paper for details]

- Honest process’ pools will eventually
accumulate entropy
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Conclusions

» Popular OSes make using randomness
more difficult than it needs to be

* Entropy estimation is at the
heart of the problem

Our Proposal
e “Best effort” randomness
 Never estimate, never block
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