
Recommendations for Randomness  
in the Operating System

Henry Corrigan-Gibbs and Suman Jana
Stanford University

HotOS XV – 20 May 2015

1

2

Android
OpenSSL

Firefox DNS
resolver

GE Ethernet 
card

Apple iOS
Sandbox

4

[Everspaugh et al., Oakland’14]
[Garfinkel+Rosenblum, HotOS’05]
[Goldberg+Wagner, Dobbs‘96]
[Gutterman+Malkhi, CT-RSA’05]
[Gutterman et al., Oakland’06]
[Heninger et al., USENIX Sec’12]
[Lazar et al., APSys’14]
[Lenstra et al., 2012]
[Ristenpart+Yilek, NDSS’12]
[Yilek et al., IMC’09]

In the past 
two years!

Why so many bugs?
Bad news: OS is a big part of the problem.

Randomness subsystems have:
•  Buggy design
•  Error-prone APIs
•  Misleading documentation

Good news: The OS can 
be part of the solution!

5

See paper

6

What is entropy?

Why do we need it?
•  Cryptographic secrets
•  ASLR
•  DNS source ports
•  Password salts
•  Etc.

Password has k bits of 
[guessing] entropy

w.r.t. an adversary A

It takes A around 2k
guesses to guess 

your password
⇔

7

Application reads 
/dev/random

Randomness
pool

8

Once the OS has accumulated enough entropy, it
will never “run out” of entropy

011010100101110010101111011000011010111

seed 256+ bits of
randomness

9

Great! But what should  
the OS do before it has 

256 bits in the pool?

After first boot… .

10

State of the Art:
Entropy Estimation

Ye Olde
Entropy

Estimator
11

State of 
the Art

27 bits

0111
“0111”

“2.3 bits”

Ye Olde
Entropy

Estimator
12

29.3 bits

1000
“1000”

“0.8 bits”

State of 
the Art

Ye Olde
Entropy

Estimator
13

30.1 bits

State of 
the Art

Ye Olde
Entropy

Estimator
14

30.1 bits

Block /dev/random
until pool has 256+ bits

X
State of 
the Art

Ye Olde
Entropy

Estimator
15

Entropy is a function of
adversary’s knowledge

Estimate could be: 256 bits
Reality could be: 0 bits

[Barak-Halevi CCS’05]
[Dodis et al. CCS’13]

[Kelsey et al., SAC‘00]

State of 
the Art

16

Entropy
estimation

Long-
blocking API

Entropy DoS
attacks

Trusted vs
untrusted

inputs

Chaos!!!
User-space
randomness

pools

Slow
accumulation

/dev/random vs.
/dev/urandom

One Consequence: User-space Pools

Reading many bytes from /dev/random can drive
down entropy estimate and starve other processes

17

Kernel Space

P1
	

User Space

P2
	

P1 and P2 get same
“random” values!

[CVE-2013-1445, CVE-2013-3599,
CVE-2014-0016, CVE-2014-0017]

18

Our Proposal

Our Proposal
Option 1: Strong Assumptions
•  Assume low-order bit of “RDRAND” has 

 one bit of entropy
•  Easy! Just gather 256 samples, use them  

to seed a PRG

What happens if your  
assumption is wrong?

19

20

Our Proposal
Option 2: “Best-effort” entropy accumulation
•  Never estimate
•  Never block
•  Any process can write into OS pool
•  Per-process pools
[See paper for details]

à Honest process’ pools will eventually 
accumulate entropy

21

[Barak-Halevi CCS’05] [Dodis et al. CCS’13] [Kelsey et al., SAC‘00]

Conclusions
•  Popular OSes make using randomness

more difficult than it needs to be
•  Entropy estimation is at the  

heart of the problem

Our Proposal
•  “Best effort” randomness
•  Never estimate, never block

22

23

