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[Everspaugh et al., Oakland’14]
[Garfinkel+Rosenblum, HotOS’05]
[Goldberg+Wagner, Dobbs‘96]
[Gutterman+Malkhi, CT-RSA’05]
[Gutterman et al., Oakland’06]
[Heninger et al., USENIX Sec’12]
[Lazar et al., APSys’14]
[Lenstra et al., 2012]
[Ristenpart+Yilek, NDSS’12]
[Yilek et al., IMC’09]

In the past 
two years!



Why so many bugs?
Bad news: OS is a big part of the problem.

Randomness subsystems have:
•  Buggy design
•  Error-prone APIs
•  Misleading documentation

Good news: The OS can 
be part of the solution!

5

See paper
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What is entropy?

Why do we need it?
•  Cryptographic secrets
•  ASLR
•  DNS source ports
•  Password salts
•  Etc.

Password has k bits of 
[guessing] entropy 

w.r.t. an adversary A

It takes A around 2k 
guesses to guess 

your password
⇔



7

Application reads 
/dev/random

Randomness 
pool
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Once the OS has accumulated enough entropy, it 
will never “run out” of entropy

011010100101110010101111011000011010111

seed 256+ bits of 
randomness
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Great! But what should  
the OS do before it has 

256 bits in the pool?

After first boot…  .
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State of the Art:
Entropy Estimation



Ye Olde 
Entropy 

Estimator 
11

State of 
the Art

27 bits

0111
“0111”

“2.3 bits”



Ye Olde 
Entropy 

Estimator 
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29.3 bits

1000
“1000”

“0.8 bits”

State of 
the Art



Ye Olde 
Entropy 

Estimator 
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30.1 bits

State of 
the Art



Ye Olde 
Entropy 

Estimator 
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30.1 bits

Block /dev/random 
until pool has 256+ bits

X
State of 
the Art



Ye Olde 
Entropy 

Estimator 
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Entropy is a function of
adversary’s knowledge

Estimate could be: 256 bits
Reality could be: 0 bits

[Barak-Halevi CCS’05]
[Dodis et al. CCS’13]

[Kelsey et al., SAC‘00]



State of 
the Art
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Entropy 
estimation

Long-
blocking API

Entropy DoS 
attacks

Trusted vs 
untrusted 

inputs

Chaos!!!
User-space 
randomness 

pools

Slow 
accumulation

/dev/random vs.
/dev/urandom



One Consequence: User-space Pools

Reading many bytes from /dev/random can drive 
down entropy estimate and starve other processes
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Kernel Space

P1
	
  

User Space

P2
	
  

P1 and P2 get same 
“random” values!

[CVE-2013-1445, CVE-2013-3599, 
CVE-2014-0016, CVE-2014-0017]
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Our Proposal



Our Proposal
Option 1: Strong Assumptions
•   Assume low-order bit of “RDRAND” has 

 one bit of entropy
•   Easy! Just gather 256 samples, use them  

to seed a PRG

What happens if your  
assumption is wrong?
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Our Proposal
Option 2: “Best-effort” entropy accumulation
•  Never estimate
•  Never block
•  Any process can write into OS pool
•  Per-process pools
[See paper for details]

à Honest process’ pools will eventually 
accumulate entropy
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[Barak-Halevi CCS’05] [Dodis et al. CCS’13] [Kelsey et al., SAC‘00]



Conclusions
•  Popular OSes make using randomness 

more difficult than it needs to be
•  Entropy estimation is at the  

heart of the problem

Our Proposal
•  “Best effort” randomness
•  Never estimate, never block
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