Recommendations for Randomness
in the Operating System

Henry Corrigan-Gibbs and Suman Jana
Stanford University

HotOS XV — 20 May 2015

Tanes

Online Encryption Method

@he New Nork
Flaw Found tn @"

By J LibreSSL' 1
[S PRNG i s \é\“
[Update: Libress_ - l{\;‘?\-\\c@xe X
(et

ebial rity AR (WO
Debian Security A“\ e

(aﬁdo | _ < random number generator

wet™®

DSA-157% . 4

ac°’

Date P‘“ ‘“\
136\\09

CVE-2013-5155 The Sandbox subsystem in A G E Ethern et

cause a denial of service (inf

writes crafr=< values to /dev Card

et card before 9445727 _ ——wrrTO00SEM-L.R3-CL

cnergy Hydran M2 does not nronerly nanerate

Apple iI0S rce Insial secysoee Nur) _
Sand bOX 3|:i-_23_me attackers to spoo And rOId

OpenSSL

CVE-2013-7373 Android before 4.4 does not properly 2~——=wr seeding of the
OpenSSL PRNG, which makes it easier for attackers to defeat
cryptographic protection mechanisms by leveraging use of the

PRNG within multiple applications.

resolver

15-0800 The PRNG implementation in the DNS resolver in Mozi

Firefox DNS

{aka Fennec) before 37.0 on Android does not propery o=
random numbers for query 1D values and UDP scwsel pores, which

makes it easier for remote attackers to spoof DNS responses by
guessing these numbers, a related issue to CVE-2012-2808.

The 17046 Ethernet cal
for the GE Digital Enerc

random vall CVE-2013-5180

makes it ea
Tor befor
with a ce
Ivy Bridc
for (1) re
which mi
cryptograph
CVE-2013-4788 The P

CVE-2013-7295

2013-737

by the
for att
leveragi

CVE-2014-4422 The kernel in Apple i{

In the past
two years!

allows remote attach

predictable random n sniffing RADIUS traf
The srandomdev function in Libc in Apple Mac OS X before 10.9, !ain ke
when the kernel random-number generator is unavailable, 2 proc
produces predictable values instead of the intended random

‘ , , _ m val
values, which makes it easier for context-dependent attackers to teJ i
defeat cryntnnranhir arntectinn marhanieme hv laveraninn .

2013-1900 PostgreSQL 9.2.x before 9.2.4, 9.1.x before
9.0.13, and 8.4.x before 8.4.17, when using
insufficiently random numbers, which might
authenticated users to have an unspecified |

ST alay 0to functions.”

VEIWEFITISHIL Ml | ¥YY

lom numbers for &
ents, which make:
J attacks via br

PRNG
makes
brute-

fion in net/core/

1500 cPU ©€
sufficient T?E
defeat

wild anai

Drupal 6.x before 6
function to generaty
seeds and allows reg
bypass intended re:

[Everspaugh et al.,
[Garfinkel+Rosenblum, HotOS’05]
[Goldberg+Wagner, Dobbs'96]
[Gutterman+Malkhi, CT-RSA05]
[Gutterman et al., Oakland’06]
[Heninger et al., USENIX Sec’12]
[Lazar et al., APSys’14]

[Lenstra et al., 2012]
[Ristenpart+Yilek, NDSS'12]
[Yilek et al., IMC'09]

ns via e
: P L

Oakland’14]
itk ? ieae

before 28.0.1500.
nt source of entro
ke it easier for re
otection mechanis

ectors.
K KErmel tnrougrn o

tackers to defeat
tiple requests for s
gement of the sta

Why so many bugs?

Randomness subsystems have:
» Buggy design

* Error-prone APIs 3
ee paper
» Misleading documentation

Good news: The OS can
be part of the solution!

What is entropy?

Password has k bits of It takes A around 2%
[guessing] entropy & guesses to guess
w.r.t. an adversary A your password

Why do we need it?

» Cryptographic secrets
« ASLR

 DNS source ports

« Password salts
e Etc.

r

Application reads\

/dev/random J

.

Once the OS has accumulated enough entropy, it
will never “run out” of entropy

seed

\ 4
‘pRG |—> 01101010010111001010111101100¢

8

Great! But what should
the OS do before it has
256 bits in the pool?

After first boot...

State of the Art:
Entropy Estimation

10

Ve OB
Entropy “2.3 bits”
Lstimator

11

Ve OB
Entropy “0.8 bits”
Lstimator

12

State of
the Art

Ve Oloe
Entropy
Estimator

13

State of
the Art

-

Block /dev/random
kuntil pool has 256+ bits

~

14

Entropy is a function of
adversary’s knowledge

Estimate could be: 256 bits
Reality could be:

Ve Ooe
Entropy
/ Barak-Halevi CCS’0
Estimator " adis ot a1 G081

[Kelsey et al., SAC‘00]
15

State of Entropy

estimation

the Art
Long- Trusted vs
blocking API untrusted

Inputs
Entropy DoS
attacks

/dev/random VS. Slow N
/dev/urandom Iati
| *>_accumulation -
. Aser-space
randomness

pools

—— /\ 16

Reading many bytes from /dev/random can drive
down entropy estimate and starve other processes

Kernel Space

.

“‘random” values!

[CVE-2013-1445, CVE-2013-3599,
CVE-2014-0016, CVE-2014-0017]

[P1 and P2 get same\y

J

I User Space

[

[

- P1

| ="
"L P2

17

Our Proposal

18

Our Proposal

Option 1: Strong Assumptions

« Assume low-order bit of “RDRAND” has
one bit of entropy

« Easy! Just gather 256 samples, use them
to seed a PRG

What happens if your
assumption is wrong?

19

Our Proposal

Option 2: “Best-effort” entropy accumulation
* Never estimate

* Never block
[Barak-Halevi CCS’05] [Dodis et al. CCS’13] [Kelsey et al., SAC‘00]

» Any process can write into OS pool
» Per-process pools
[See paper for details]

- Honest process’ pools will eventually
accumulate entropy

21

Conclusions

» Popular OSes make using randomness
more difficult than it needs to be

* Entropy estimation is at the
heart of the problem

Our Proposal
e “Best effort” randomness
 Never estimate, never block

22

23

