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APPLICATION PORTABILITY

Applications should be portable between environments 

- Reduce development effort and bugs 

- Avoid vendor lock-in
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Amazon EC2 OpenStack Nova

Application 1 Application 2

Common API
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API Compatibility is not enough!

Application correctness depends 
upon unspecified properties  

of the storage stack

Results: data corruption, data loss, 
unavailability [PillaiOSDI14]
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PORTABILITY BUG STUDY

Portability bug: bug that occurs when an application is 
moved to a different environment

Studied public bug databases

- Android deployed on different mobile devices

- Applications run on cloud platforms and on NFS

Performed our own experiments based on previous 
work [PillaiOSDI14]

9



OPERATIONS NOT SUPPORTED
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SQLite creates temporary files 
by opening a file and unlinking them 

Not supported 
by the daemon emulating FAT32 

on the sd card

FAT32 File System 



UNEXPECTED ERROR CODES
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fsync() on 
FreeBSD returns ENOLCK 

even on success

MySQL restarts when 
it sees that error

NFS



ORDERING REQUIREMENTS NOT MET
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We term this an 
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API compatibility is not enough!

All file systems are not created equal: On the complexity of 
crafting crash-consistent applications, OSDI 2014
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Formally verify that an 
application 

 will run correctly  
on a given storage stack
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Application requirements can be complex 

- e.g., append(“AB”) should result in file containing A or AB 

- if then else form 
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Need expressive language for  
specifying application requirements

<= What  
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What application 
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Disk provides 
 atomic reads and writes

File system provides 
atomic metadata operations

Disk
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Postgres provides 
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guarantees provided by the stack
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Application  
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Stack 
Configuration Library of  

stack-layer 
specifications

Result

E.g., put() must 
be atomic

E.g., put() is atomic on given stack

Use the proof assistant to manually write  
machine-checked proofs

E.g., Key-Value Store 
on top of disk



EXPERIENCE WITH ISABELLE

Modelled a simple 2-layer stack

- Key-value store on top of a disk

Proved put() is atomic

About 160 lines of code (lots of trial and error)

 Code available at: https://github.com/ramanala/
StorageStackSemantics 
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CHALLENGES

Obtaining specifications 

- Developer provides/written by grad students 

- How to figure out automatically?

Automatic proofs 

- Use Z3 instead of Isabelle?

Proofs without specifications 

- Know a layer provides guarantees, without knowing how

Verifying implementations
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CONCLUSION

The promise of software-defined storage 

- Increases in performance, flexibility, and utilization 

- Unspoken aspect: application correctness!

Simply ensuring API compatibility is not enough 

- Storage semantics are complex and nuanced

PL tools like SMT solvers/proof assistants can help 
match application to diverse storage stacks

Interesting, significant challenges on path ahead
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THANK YOU! 
QUESTIONS?

SOURCE CODE AT:
HTTP://CS.WISC.EDU/~VIJAYC

VIJAY CHIDAMBARAM 
UNIVERSITY OF WISCONSIN MADISON 
VIJAYC@CS.WISC.EDU | HTTP://CS.WISC.EDU/~VIJAYC


