
BEYOND STORAGE APIS:
PROVABLE SEMANTICS FOR
STORAGE STACKS

UNIVERSITY OF WISCONSIN-MADISON

RAMNATTHAN
ALAGAPPAN

VIJAY
CHIDAMBARAM

THANUMALAYAN
PILLAI

REMZI
ARPACI-DUSSEAU

ANDREA
ARPACI-DUSSEAU

AWS
ALBARGHOUTHI

2

Application

Laptops

2

Application

Laptops Desktops

2

Application

Laptops Desktops

Mobile Devices

2

Application

Laptops Desktops

Mobile Devices

Private and
Public Clouds

2

Application

Laptops Desktops

Mobile Devices

Private and
Public Clouds

Heterogeneity of environments is increasing

STORAGE STACKS: DEEP AND DIVERSE

3

Windows IO stack has 18 layers! [ThereskaSOSP13]

STORAGE STACKS: DEEP AND DIVERSE

3

Application

SSTF

Disk

ext4

Workstation

Application

CFQ

SSD

btrfs

Laptop

Application

CFQ

SSD

F2FS

Mobile

Windows IO stack has 18 layers! [ThereskaSOSP13]

APPLICATION PORTABILITY

Applications should be portable between environments

- Reduce development effort and bugs

- Avoid vendor lock-in

4

Amazon EC2 OpenStack Nova

Application 1 Application 2

Common API

API Compatibility is not enough!

API Compatibility is not enough!

Application correctness depends
upon unspecified properties

of the storage stack

API Compatibility is not enough!

Application correctness depends
upon unspecified properties

of the storage stack

Results: data corruption, data loss,
unavailability [PillaiOSDI14]

THE VISION

6

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

CFQ

SSD

F2FS

Mobile

D
at

ac
en

te
r

THE VISION

6

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

CFQ

SSD

F2FS

Mobile

D
at

ac
en

te
r

?

?
?

Quick, automated
check at deployment

THE VISION

6

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

CFQ

SSD

F2FS

Mobile

D
at

ac
en

te
r

?

?
?

Quick, automated
check at deployment

✅

❌

✅

THE VISION

7

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

D
at

ac
en

te
r

THE VISION

7

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

D
at

ac
en

te
r

Which is the best node to deploy this application to?

THE VISION

7

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

D
at

ac
en

te
r

?
?

Which is the best node to deploy this application to?

THE VISION

7

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

D
at

ac
en

te
r

?
?

Which is the best node to deploy this application to?

✅

✅

THE VISION

7

Application

Disk

ext4

Node 1

…

SSD

btrfs

Node 1

…

D
at

ac
en

te
r

?
?

Which is the best node to deploy this application to?

✅

Best: least # of stack layers, least utilized, etc.

✅

OUTLINE

Introduction

Portability Bug Study

First Steps Toward The Vision

The Road Ahead

8

1

3

2

4

PORTABILITY BUG STUDY

Portability bug: bug that occurs when an application is
moved to a different environment

Studied public bug databases

- Android deployed on different mobile devices

- Applications run on cloud platforms and on NFS

Performed our own experiments based on previous
work [PillaiOSDI14]

9

OPERATIONS NOT SUPPORTED

10

SQLite creates temporary files
by opening a file and unlinking them

Not supported
by the daemon emulating FAT32

on the sd card

FAT32 File System

UNEXPECTED ERROR CODES

11

fsync() on
FreeBSD returns ENOLCK

even on success

MySQL restarts when
it sees that error

NFS

ORDERING REQUIREMENTS NOT MET

12

Cloud

Partial
File!log

file
part
2

file
part 1

file
part
1

File System

Inotify

13

ext4

Workstation

Guarantee: Committed data can always be
read back after a crash

POSIX

btrfs

Laptop

POSIX

All file systems are not created equal: On the complexity of
crafting crash-consistent applications, OSDI 2014

13

ext4

Workstation

Guarantee: Committed data can always be
read back after a crash

Guarantee: Committed data can always be
read back after a crash

POSIX

btrfs

Laptop

POSIX

All file systems are not created equal: On the complexity of
crafting crash-consistent applications, OSDI 2014

13

ext4

Workstation

POSIX

btrfs

Laptop

POSIX

Write A
Write B
Write C

A

A B A B C

B

All file systems are not created equal: On the complexity of
crafting crash-consistent applications, OSDI 2014

13

ext4

Workstation

We term this an
 Application Crash Vulnerability

POSIX

btrfs

Laptop

POSIX

All file systems are not created equal: On the complexity of
crafting crash-consistent applications, OSDI 2014

13

ext4

Workstation

We term this an
 Application Crash Vulnerability

POSIX

btrfs

Laptop

POSIX

API compatibility is not enough!

All file systems are not created equal: On the complexity of
crafting crash-consistent applications, OSDI 2014

OUTLINE

Introduction

Portability Bug Study

First Steps Toward The Vision

The Road Ahead

14

1

3

2

4

Formally verify that an
application

 will run correctly
on a given storage stack

15

What
application
requires

<=
What

storage stack
provides

WHY IS THIS HARD?

16

Application requirements can be complex

- e.g., append(“AB”) should result in file containing A or AB

- if then else form

Binary or numerical checks are not sufficient

<= What
storage stack provides

What application
requires

WHY IS THIS HARD?

16

Application requirements can be complex

- e.g., append(“AB”) should result in file containing A or AB

- if then else form

Binary or numerical checks are not sufficient

Need expressive language for
specifying application requirements

<= What
storage stack provides

What application
requires

WHY IS THIS HARD?

17

Disk provides
 atomic reads and writes

File system provides
atomic metadata operations

Disk

ext3

Postgres
Postgres provides
ACID transactions

<= What
storage stack provides

What application
requires

WHY IS THIS HARD?

17

Disk provides
 atomic reads and writes

File system provides
atomic metadata operations

Disk

ext3

Postgres
Postgres provides
ACID transactionsNeed to dynamically compute

guarantees provided by the stack

<= What
storage stack provides

What application
requires

OVERVIEW

18

Application

CFQ

Disk

ext4

Model guarantees the application
requires from storage as a theorem

Model guarantees provided by
each layer of the storage stack

as axioms

Ex: application will be crash-consistent
 if all writes are ordered and atomic

Ex: disk guarantees sector-level reads
and writes are atomic even with crash

OVERVIEW

18

Application

CFQ

Disk

ext4

Model guarantees the application
requires from storage as a theorem

Model guarantees provided by
each layer of the storage stack

as axioms

Ex: application will be crash-consistent
 if all writes are ordered and atomic

Ex: disk guarantees sector-level reads
and writes are atomic even with crash

Prove application theorem using
axioms from storage stack

SYSTEM

19

Application
Requirements

Stack
Configuration Library of

stack-layer
specifications

Result

PROVER

E.g., put() must
be atomic

E.g., put() is atomic on given stack

E.g., Key-Value Store
on top of disk

SYSTEM

20

Application
Requirements

Stack
Configuration Library of

stack-layer
specifications

Result

E.g., put() must
be atomic

E.g., put() is atomic on given stack

E.g., Key-Value Store
on top of disk

SYSTEM

20

Application
Requirements

Stack
Configuration Library of

stack-layer
specifications

Result

E.g., put() must
be atomic

E.g., put() is atomic on given stack

Use the proof assistant to manually write
machine-checked proofs

E.g., Key-Value Store
on top of disk

EXPERIENCE WITH ISABELLE

Modelled a simple 2-layer stack

- Key-value store on top of a disk

Proved put() is atomic

About 160 lines of code (lots of trial and error)

 Code available at: https://github.com/ramanala/
StorageStackSemantics

21

EXPERIENCE WITH ISABELLE

Modelled a simple 2-layer stack

- Key-value store on top of a disk

Proved put() is atomic

About 160 lines of code (lots of trial and error)

 Code available at: https://github.com/ramanala/
StorageStackSemantics

21

OUTLINE

Introduction

Portability Bug Study

First Steps Toward The Vision

The Road Ahead

22

1

3

2

4

CHALLENGES

Obtaining specifications

- Developer provides/written by grad students

- How to figure out automatically?

Automatic proofs

- Use Z3 instead of Isabelle?

Proofs without specifications

- Know a layer provides guarantees, without knowing how

Verifying implementations

23

CONCLUSION

The promise of software-defined storage

- Increases in performance, flexibility, and utilization

- Unspoken aspect: application correctness!

Simply ensuring API compatibility is not enough

- Storage semantics are complex and nuanced

PL tools like SMT solvers/proof assistants can help
match application to diverse storage stacks

Interesting, significant challenges on path ahead

24

THANK YOU!
QUESTIONS?

SOURCE CODE AT:
HTTP://CS.WISC.EDU/~VIJAYC

VIJAY CHIDAMBARAM
UNIVERSITY OF WISCONSIN MADISON
VIJAYC@CS.WISC.EDU | HTTP://CS.WISC.EDU/~VIJAYC

