

A Comparison of Communication Mechanisms in Vehicular Edge Computing

Liangkai Liu, Baofu Wu and Weisong Shi

Wayne State University http://thecarlab.org

Outline

- Motivation
- Contributions
- Experimental Setup and Prototype
 - Wi-Fi, LTE, DSRC
- Comparisons and Evaluation
 - latency, power dissipation, system utilization
- Future Work

Motivations

DSRC: Dedicated Short-Range Communications

Contributions

- To the best of our knowledge, our work is the first comparison of communication mechanisms of *LTE*, *Wi-Fi*, and *DSRC* using real VEC applications.
- An end-to-end communication prototype is built which can support *LTE*, *DSRC*, and *Wi-Fi*. On top of the prototype, *ROS*, *Socket*, and *Ping* messages are implemented.
- We evaluated the communication prototype in *latency, power dissipation*, and *system utilization* and get three observations for the real deployment of VEC applications.

Experiment Setup

- Computation Device
 - Intel Fog Refence
- Communication Devices
 - Wi-Fi router
 - USRP B210 board + VERT
 - Mokar DSRC RSE + OBE
- Autonomous Driving Robot
 - HydraOne

Mecanum Wheels

https://thecarlab.org/hydraone/

DC Motors w/E

OBU device

TCP server

Socket messages

TCP client

OBPC

roscore

OBPC_talker

OBPC_listener

Equinox-Int

OBU

End-to-End Prototype

Comparisons

- Messages
 - ICMP-based: Ping message
 - Robot Operating System (ROS) messages:
 - Basic Safety Message (BSM): from DSRC protocol
 - Image
- Metrics
 - End-to-End latency
 - Power dissipation
 - System utilization

End-to-End Latency

Average End-to-End Latency					Latency of BSM with different speed				
	Latency (ms)	LTE	Wi-Fi	DSRC		Latency (ms)	LTE	Wi-Fi	DSRC
	BSM	3.12	67.96	8.46		0 m/s	3.12	15.06	8.88
	image	6174.32	1733.90	-		3 m/s	657.28	12.99	9.12
	Ping	25.02	50.49	-		5 m/s	1071.52	16.18	9.21

Observation 1: A communication mechanism which can provide sufficient and stable bandwidth is still missing.

Power Dissipation

Connection

BSM

6

4

2 0

6/18/20

Ping

Image

OBU as Receiver

15

10

5

0

Connection

BSM

Ping

Image

RSU as Sender

System Utilization

Overhead of LTE

Matrica	R	OBU	
metrics	ros master	eNB	UE
Memory (Mb)	50.364	1599.532	1488
CPU (%)	2.22	27.73	23.56

1GB memory

Raspberry Pi 3B+

Observation 3: The usage of *srsLTE* as well as *ROS* introduces non-negligible system overhead.

Future Work

• Outdoor experiments

• C-V2X, 5G included into the comparison

T-Mobile verizon

Accelerator-based devices included into RSU

GM Mobility Research Center

Thanks! Q&A

Email: liangkai@wayne.edu