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Migrate Things from Cloud to the Edge



Challenges in Edge Computing

Cloud native applications can be adopted directly to the edge?  

Limited 
Resource

Image
Bloat

Slow
Startup
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Limited Resources
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Image Size Bloat
● Containerized applications with bloated size

○ Due to heavy/complex runtimes
○ Hardware acceleration supports
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With GPU support like CUDA runtime,

the number becomes far worse



Slow Launch Time

Workload execution starts → 

Docker run

Runc run

Python language runtime bootup

Import TensorFlow

2000 msec 40 msec

200 msec 1700 msec
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Alternative approach: Checkpoint/Restore

1) Image Size
a) Bootup Time
b) Checkpoint/Restore based 

approach 
solves the lengthened bootup 
latency?

2) Resource Pressure
a) However, the answer to Q2 incurs 

heavy resource pressure -- C/R 
incurs 
a high memory cost.
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Figure: Comparison of maximum memory usage of containers with TensorFlow application, 
using between checkpoint restore and cold boot, respectively.

Not solving 
image bloat

Nimble to 
start?

Resource-
demanding

● Checkpointing requires additional memory by nature.



Alternative approach: Single long-running monolithic 
container

8

Runtime

Application

+ Limit resource requirement to a single 
runtime 

+ Remove need for on-demand launch time

- Exposes new programming and 
deployment APIs 

- Does not leverage existing container-based 
infrastructure 



Addressing the Gap
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Runtime

Application

● Seeking opportunity to satisfy the edge requirements while retaining the 
benefits from containerization

● Our answer is: shared backend



Addressing the Gap: Shared Runtime Backend
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Application

Runtime

● Shared backend is a long running service process, warms up thick runtimes 
in advance and allows them to be shared among multiple instances

● Applications do not need to include, or launch heavy runtime itself, but just 
borrow them



A1

Runtime

ANA2 … 

Addressing the Gap: Shared Runtime Backend + 
Lightweight Application Containers
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● Benefits from containerization retained with smaller image size



A1

Runtime

ANA2 … 

Addressing the Gap: Shared Runtime Backend + 
Lightweight Application Containers
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● Resource pressure reduced thanks to not instantiating multiple runtimes 
for each applications



Pocket

A service container

Application containers
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● a new lightweight system to support edge 
computing

● splits containerized applications into two 
parts: application container and a 
bloat-causing runtime service container

+ retains benefits of container technologies 
+ achieves lower resource pressure, higher 

responsiveness, and better scalability 



Execution Model / Programming Model

File System Devices

Python Tensorflow PyTorch

Application 
Container

Application 
Container

Application 
Container

Pocket Interface

Service Container

Concurrency and 
Dynamic Resource 
Scaling in Runtime

High Performance IPC
request
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response

Workload Isolation



Evaluation
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Experimental Setup

https://github.com/zzh8829/yolov3-tf2
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● Pocket demands less resource when # instances are equivalent.
○ Pocket application does not include Tensorflow in it, but monolithic application package must 

possess Tensorflow as its part
○ One Tensorflow-service process vs. N Tensorflow-service process

Pocket achieves higher resource efficiency
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● Pocket outperforms monolithic with regard to mean execution time
○ Pocket benefits from shared backend, and also shared model

Pocket improves application performance
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# Instances Pocket Monolithic

1 10.75 10.64

5 9.944 11.288

10 4.442 12.335

20 3.3245 12.663

(second)

Mean time to launch 1 & 10 concurrent instances



Pocket allows for lightweight application containers

● Lightweight communication mechanism is necessary
○ gRPC and its dependency take time to import
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# Instances Pocket-ssh Pocket-rpc Monolithic

1 58.69 2793.50 2575.63

10 63.55 6627.37 5800.86

(millisecond)

Mean time to launch 1 & 10 concurrent instances



Summary of Contributions

Pocket approach to application stack for the edge
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Problems

Image bloat
Slow startup

Resource pressure

Path 
Forward

Compact containers 
for the edge with

shared backend runtimes

Open 
Questions

Concurrency, isolation, 
with lightweight and 

high-performance IPC


