Georgia &&
Tech

=

CREATING THE NEXT

Toward Lighter Containers for the Edge

Misun Park

misun@gatech.edu
Ketan Bhardwaj
ketanbj@gatech.edu

Ada Gavrilovska
ada@cc.gatech.edu

Migrate Things from Cloud to the Edge

©)

Base Station Mobile Core Cloud data centers

= Feta e

Do 8 B { B0 EE

< S 909

NVIDIA |

CUDA Mobile devices MEC Servers Congestion domains

\. J
K. Bilal, O. Khalid, A. Erbad and S. U. Khan, “Potentials, trends, and prospects in edge
technologies: Fog, cloudlet, mobile edge, and micro data centers”, Computer
Networks, vol 130, pp 94-120, 1 2018, doi: 10.1016/j.comnet.2017.10.002.

Challenges in Edge Computing

Cloud native applications can be adopted directly to the edge?

Limited Image
Resource Bloat

Limited Resources
&

oculus <~
NETF%’ T

Image Size Bloat

e Containerized applications with bloated size
o Due to heavy/complex runtimes
o Hardware acceleration supports

Table 1. Image sizes of a container with heavy runtime

ubuntu:latest | tensorflow/tensorflow:2.0.1-py3 (cpu)
25.9 MB 428.21 MB

with GPU support like CUDA runtime,

1F () the number becomes far worse
—

o NVIDIA.
TensorFlow PyTOrch unit CUDA

Slow Launch Time

2000 msec

Docker run

40 msec

Python language runtime bootup

Workload execution starts —

I -
_Y_J

Runc run

200 msec

J

Y

Import TensorFlow

1700 msec

>

Alternative approach: Checkpoint/Restore

MB

200

m C/R = Cold Boot

Resource- Not solving Nimble to

150 demanding image bloat start?

100

50 e Checkpointing requires additional memory by nature.

max_mem_usage Figure: Comparison of maximum memory usage of containers with TensorFlow application,
using between checkpoint restore and cold boot, respectively.

Alternative approach:
container

Runtime

Single long-running monolithic

+ Limit resource requirement to a single
runtime
+ Remove need for on-demand launch time

- EXxposes new programming and
deployment APIs

- Does not leverage existing container-based
infrastructure

Addressing the Gap

e Seeking opportunity to satisfy the edge requirements while retaining the
benefits from containerization
e Qur answeris: shared backend

4)

Application

Runtime

Addressing the Gap: Shared Runtime Backend

e Shared backend is a long running service process, warms up thick runtimes
in advance and allows them to be shared among multiple instances

e Applications do not need to include, or launch heavy runtime itself, but just
borrow them

Application

10

Addressing the Gap: Shared Runtime Backend +
Lightweight Application Containers

e Benefits from containerization retained with smaller image size

[A1 } [A2 })

11

Addressing the Gap: Shared Runtime Backend +
Lightweight Application Containers

e Resource pressure reduced thanks to not instantiating multiple runtimes
for each applications

Pocket

A service con

iner

e a new lightweight system to support edge
computing

e splits containerized applications into two
parts: application container and a
bloat-causing runtime service container

+ retains benefits of container technologies
+ achieves lower resource pressure, higher

responsiveness, and better scalability
Application containers

13

Execution Model / Programming Model

Application Application PP Application
Container Container Container Workload Isolation

N

)
response request
Pocket Interface ,

k) High Performance IPC

| | 7

| ™ - | 7/ '
/ " 0 ° ' \

\ Service Container

7
O O—

~
4 v U
Python } [

Tensorflow PyTorch
Concurrency and
Dynamic Resource

Scaling in Runtime

-
-

~
J

File System } [Devices

14

Evaluation

15

Experimental Setup

Y

https://github.com/zzh8829/yolov3-tf2

HG
i

Processors | Intel(R) Xeon(R) CPU E5-2670 v3
@ 2.30GHz; 2 Processors;
24 cores; 48 threads
Motherboard | Dell Inc. 0CNCJW
OS Drive | ATA ST9250610NS
Memory | 128GiB
Operating System | 18.04.3 LTS

(GNU/Linux 4.15.0-76-generic
x86_64)

Software Settings

tensorflow/tensorflow:2.1.0-py3
gcec 7.4.0
python 3.6.9

tensorflow 2.1.0

16

Pocket achieves higher resource efficiency

20.0+
17.5+

Normalized CPU Usage

o
=)

Pocket demands less resource when # instances are equivalent.
Pocket application does not include Tensorflow in it, but monolithic application package must
possess Tensorflow as its part

(@)

@)

One Tensorflow-service process vs. N Tensorflow-service process

15.01
12.54
10.0

L, |
n o u

mmm Pocket

B Monolithic

n=5 n=10 n=20
Concurrent Instances

20.0

>17.51
o

£

Me

X

ea

a

Normalized

12.51

10.0 1

mmm Pocket

s Monolithic

n=5 n=10 n=20
Concurrent Instances

20.0
w 17.54
£ 15.01

d Page

Normaliz

12,5+
2 10.0
7.5
5.0
2.5

mmm Pocket
I Monolithic

n=1 n=5 n=10 n=20
Concurrent Instances

17

Pocket improves application performance

e Pocket outperforms monolithic with regard to mean execution time
o Pocket benefits from shared backend, and also shared model

Mean time to launch 1 & 10 concurrent instances

Instances Pocket Monolithic
1 10.75 10.64
5 9.944 11.288
10 4.442 12.335
20 3.3245 12.663

(second)
18

Pocket allows for lightweight application containers

e Lightweight communication mechanism is necessary
o gRPC and its dependency take time to import

Mean time to launch 1 & 10 concurrent instances

Instances Pocket-ssh Pocket-rpc Monolithic
1 58.69 2793.50 2575.63
10 63.55 6627.37 5800.86

(millisecond)

19

Summary of Contributions

Pocket approach to application stack for the edge

Problems

Image bloat
Slow startup
Resource pressure

Path
Forward

Compact containers
for the edge with
shared backend runtimes

Open

Questions

Concurrency, isolation,
with lightweight and
high-performance |IPC

20

