
Toward Lighter Containers for the Edge

Misun Park
misun@gatech.edu
Ketan Bhardwaj
ketanbj@gatech.edu
Ada Gavrilovska
ada@cc.gatech.edu

2

K. Bilal, O. Khalid, A. Erbad and S. U. Khan, “Potentials, trends, and prospects in edge
technologies: Fog, cloudlet, mobile edge, and micro data centers”, Computer
Networks, vol 130, pp 94–120, 1 2018, doi: 10.1016/j.comnet.2017.10.002.

Migrate Things from Cloud to the Edge

Challenges in Edge Computing

Cloud native applications can be adopted directly to the edge?

Limited
Resource

Image
Bloat

Slow
Startup

3

Limited Resources

4

Image Size Bloat
● Containerized applications with bloated size

○ Due to heavy/complex runtimes
○ Hardware acceleration supports

5

With GPU support like CUDA runtime,

the number becomes far worse

Slow Launch Time

Workload execution starts →

Docker run

Runc run

Python language runtime bootup

Import TensorFlow

2000 msec 40 msec

200 msec 1700 msec

6

Alternative approach: Checkpoint/Restore

1) Image Size
a) Bootup Time
b) Checkpoint/Restore based

approach
solves the lengthened bootup
latency?

2) Resource Pressure
a) However, the answer to Q2 incurs

heavy resource pressure -- C/R
incurs
a high memory cost.

7

MB

Figure: Comparison of maximum memory usage of containers with TensorFlow application,
using between checkpoint restore and cold boot, respectively.

Not solving
image bloat

Nimble to
start?

Resource-
demanding

● Checkpointing requires additional memory by nature.

Alternative approach: Single long-running monolithic
container

8

Runtime

Application

+ Limit resource requirement to a single
runtime

+ Remove need for on-demand launch time

- Exposes new programming and
deployment APIs

- Does not leverage existing container-based
infrastructure

Addressing the Gap

9

Runtime

Application

● Seeking opportunity to satisfy the edge requirements while retaining the
benefits from containerization

● Our answer is: shared backend

Addressing the Gap: Shared Runtime Backend

10

Application

Runtime

● Shared backend is a long running service process, warms up thick runtimes
in advance and allows them to be shared among multiple instances

● Applications do not need to include, or launch heavy runtime itself, but just
borrow them

A1

Runtime

ANA2 …

Addressing the Gap: Shared Runtime Backend +
Lightweight Application Containers

11

● Benefits from containerization retained with smaller image size

A1

Runtime

ANA2 …

Addressing the Gap: Shared Runtime Backend +
Lightweight Application Containers

12

● Resource pressure reduced thanks to not instantiating multiple runtimes
for each applications

Pocket

A service container

Application containers

13

● a new lightweight system to support edge
computing

● splits containerized applications into two
parts: application container and a
bloat-causing runtime service container

+ retains benefits of container technologies
+ achieves lower resource pressure, higher

responsiveness, and better scalability

Execution Model / Programming Model

File System Devices

Python Tensorflow PyTorch

Application
Container

Application
Container

Application
Container

Pocket Interface

Service Container

Concurrency and
Dynamic Resource
Scaling in Runtime

High Performance IPC
request

14

response

Workload Isolation

Evaluation

15

Experimental Setup

https://github.com/zzh8829/yolov3-tf2

16

● Pocket demands less resource when # instances are equivalent.
○ Pocket application does not include Tensorflow in it, but monolithic application package must

possess Tensorflow as its part
○ One Tensorflow-service process vs. N Tensorflow-service process

Pocket achieves higher resource efficiency

17

● Pocket outperforms monolithic with regard to mean execution time
○ Pocket benefits from shared backend, and also shared model

Pocket improves application performance

18

Instances Pocket Monolithic

1 10.75 10.64

5 9.944 11.288

10 4.442 12.335

20 3.3245 12.663

(second)

Mean time to launch 1 & 10 concurrent instances

Pocket allows for lightweight application containers

● Lightweight communication mechanism is necessary
○ gRPC and its dependency take time to import

19

Instances Pocket-ssh Pocket-rpc Monolithic

1 58.69 2793.50 2575.63

10 63.55 6627.37 5800.86

(millisecond)

Mean time to launch 1 & 10 concurrent instances

Summary of Contributions

Pocket approach to application stack for the edge

20

Problems

Image bloat
Slow startup

Resource pressure

Path
Forward

Compact containers
for the edge with

shared backend runtimes

Open
Questions

Concurrency, isolation,
with lightweight and

high-performance IPC

