

Faculty of computer science

Transparent Microsegmentation in Smart Home IoT Networks

Amr Osman¹ Armin Wasicek² Stefan Köpsell¹

Thorsten Strufe¹

¹Chair of Privacy and Data Security TU Dresden firstname.lastname@tu-dresden.de ² Avast Inc.

Outline

2 Problem

Requirements

Existing solutions

8 Microsegmentation

- System design
- Transparent microsegmentation

4 Evaluation

5 Conclusion

・ロ・・西・・ヨ・・ヨー うへぐ

slide 1 of 27

2) Proble

- Requirements
- Existing solutions

Microsegmentation

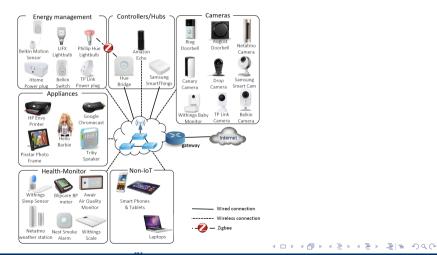
- System design
- Transparent microsegmentation

Evaluation

5 Conclusior

・ロト・西ト・ヨト・ヨー うへぐ

HotEdge'20


Transparent Microsegmentation in Smart Home IoT Networks

slide 2 of 27

Smart home IoT networks

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

slide 3 of 27

Problem

Requirements

• Existing solutions

Microsegmentation

- System design
- Transparent microsegmentation

Evaluation

Problem statement

Communication setting:

- Mixed wired + wireless connectivity
- TCP/IP Protocol suite
- Ethernet as a L2 protocol (802.11 MAC addresses)

Threat model:

- Internal attacker
- Active
- Laterally moving
- Seeks: Reconnaissance, Data exflitration, Unauthorized access, DoS, .. etc)

・ロ・・西・・ヨ・・ヨー うへぐ

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

Problem statement

Communication setting:

- Mixed wired + wireless connectivity
- TCP/IP Protocol suite
- Ethernet as a L2 protocol (802.11 MAC addresses)

Threat model:

- Internal attacker
- Active
- Laterally moving
- Seeks: Reconnaissance, Data exflitration, Unauthorized access, DoS, .. etc)

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

• Existing solutions

Microsegmentation

- System design
- Transparent microsegmentation

Evaluation

5 Conclusior

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

slide 6 of 27

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- **0-conf**: require no manual configurations for the residential gateway and the IoT end devices.

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- **0-conf**: require no manual configurations for the residential gateway and the IoT end devices.

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- 0-conf: require no manual configurations for the residential gateway and the IoT end devices.

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- 0-conf: require no manual configurations for the residential gateway and the IoT end devices.

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- **0-conf**: require no manual configurations for the residential gateway and the IoT end devices.

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- **0-conf**: require no manual configurations for the residential gateway and the IoT end devices.

slide 7 of 27

- Isolation: controlling communication between devices within each microsegment, between microsegments, and external endpoints in the cloud or internet.
- Scalability: sustaining a large number of microsegments, IoT devices and home networks.
- Edge-readiness: virtual network functions in the edge cloud must seamlessly augment the home network.
- Automatic segment allocation: newly connected devices should be automatically recognized, identified and appropriately put into a microsegment.
- Adaptability: dynamically changing the current set of microsegments configuration at runtime as new devices are added to the smart home.
- 0-conf: require no manual configurations for the residential gateway and the IoT end devices.

• Existing solutions

Microsegmentation

- System design
- Transparent microsegmentation

Evaluation

Existing solutions

Categories: Firewalls, VLANs, Overlays, Multiple APs, NAC-Servers, IP Subnets

Solution	Isolation	Scalability	Edge-ready?	Auto-alloc.	Adaptability	0-conf
Firewall		No	No	No		No
VLAN	Yes	4096	No	No		No
VxLAN	Yes	2 ²⁴	No	No		No
Multi-AP	Yes		No	No	No	No
RADIUS		No	No	No	Yes	No
Subnetsv4		$\sim 2^{30} - 2$	No	No	No	No
MUD		No	No	Yes		No
Ours		264				

Notes:

- VLANs are not well-suited for WLANs
- All existing solutions require complex manual configuration on the residential gateway, prior knowledge about the topology and are not transparent to the end user
- Some of the existing solutions require complex configurations for the IoT end devices and the infrastructure (e.g. RADIUS, Multi-AP, MUD)

Existing solutions

Categories: Firewalls, VLANs, Overlays, Multiple APs, NAC-Servers, IP Subnets

Solution	Isolation	Scalability	Edge-ready?	Auto-alloc.	Adaptability	0-conf
Firewall	Can	No	No	No	Can	No
VLAN	Yes	4096	No	No	Can	No
VxLAN	Yes	2 ²⁴	No	No	Can	No
Multi-AP	Yes	~10	No	No	No	No
RADIUS	Can	No	No	No	Yes	No
Subnetsv4	Can	$-2^{30} - 2$	No	No	No	No
MUD	Can	No	No	Yes	Can	No
Ours	Yes	264	Yes	Yes	Yes	Yes

Notes:

- VLANs are not well-suited for WLANs
- All existing solutions require complex manual configuration on the residential gateway, prior knowledge about the topology and are not transparent to the end user
- Some of the existing solutions require complex configurations for the IoT end devices and the infrastructure (e.g. RADIUS, Multi-AP, MUD)

2 Probl

- Requirements
- Existing solutions

3 Microsegmentation

- System design
- Transparent microsegmentation

Evaluation

・ロト・西ト・ヨト・ヨー うへぐ

Microsegmentation

Two edge cloud VNFs are implemented: Network Inventory & Microsegmenter

- Network Inventory: Automatically fingerprints, scans and classifies devices based on functionality and security vulnerabilities
- Microsegmenter: Allocates devices to microsegments based on Network Inventory results

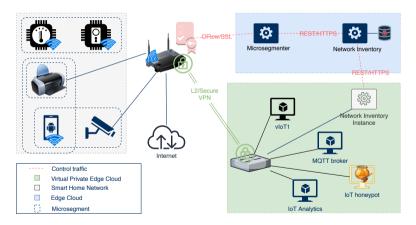
Strategy: Classify and isolate devices based on functionalities, i.e. Printers, Mobile Devices, Laptop/PCs, Cameras, ... etc)

4

ヨト ヨヨ わへで

2 Probl

- Requirements
- Existing solutions
- 3 Microsegmentation
 System design
 Transparent microsegmentation



System design

・ロト・西ト・ヨト・ヨー うへぐ

Transparent Microsegmentation in Smart Home IoT Networks

slide 13 of 27

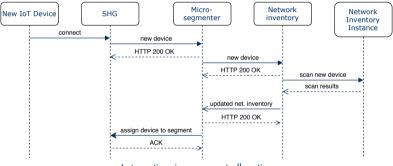
2 Proble

- Requirements
- Existing solutions

3 Microsegmentation

- System design
- Transparent microsegmentation

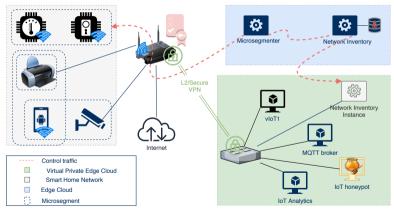
Conclusior


・ロト・西ト・ヨト・ヨー うへぐ

Transparent microsegmentation

Automatic microsegment allocation

Transparent Microsegmentation in Smart Home IoT Networks


slide 15 of 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Transparent microsegmentation

Automatic microsegment allocation

Transparent Microsegmentation in Smart Home IoT Networks

slide 16 of 27

(ロ) (四) (三) (三) (三) (三) (○) (○)

Transparent microsegmentation

Network flows isolation inter- and intra- segments

Transparent Microsegmentation in Smart Home IoT Networks

slide 17 of 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

2 Probl

- Requirements
- Existing solutions

Microsegmentation

- System design
- Transparent microsegmentation

4 Evaluation

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

slide 18 of 27

- Used 3 different smart home network topologies with more than 28 different IoT devices from different vendors [1, 2, 3].
- Used well-known packet traces and IoT network vulnerability metrics from past literature.
- Measured: Scalability, Effectiveness, Impact on functionality
- Case study: Mirai infected webcam (65.85% attack surface reduction)

- Used 3 different smart home network topologies with more than 28 different IoT devices from different vendors [1, 2, 3].
- Used well-known packet traces and IoT network vulnerability metrics from past literature.
- Measured: Scalability, Effectiveness, Impact on functionality
- Case study: Mirai infected webcam (65.85% attack surface reduction)

< □ ト < @ ト < 注 ト < 注 ト 三 三 の Q (* slide 19 of 27)

- Used 3 different smart home network topologies with more than 28 different IoT devices from different vendors [1, 2, 3].
- Used well-known packet traces and IoT network vulnerability metrics from past literature.
- Measured: Scalability, Effectiveness, Impact on functionality
- Case study: Mirai infected webcam (65.85% attack surface reduction)

- Used 3 different smart home network topologies with more than 28 different IoT devices from different vendors [1, 2, 3].
- Used well-known packet traces and IoT network vulnerability metrics from past literature.
- Measured: Scalability, Effectiveness, Impact on functionality
- Case study: Mirai infected webcam (65.85% attack surface reduction)

- Used 3 different smart home network topologies with more than 28 different IoT devices from different vendors [1, 2, 3].
- Used well-known packet traces and IoT network vulnerability metrics from past literature.
- Measured: Scalability, Effectiveness, Impact on functionality
- Case study: Mirai infected webcam (65.85% attack surface reduction)

Scalability

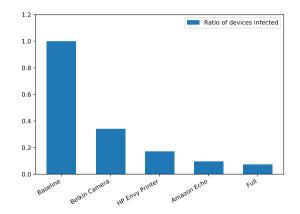
Number of	Count		
Smart homes	2 ⁶⁴		
Segments per home	2 ⁶⁴		
Devices per segment	2 ⁴⁸ — 2		
OF rules required	s[n(n+1)-2]+8		

Where:

- *s* is the total number of segments
- *n* is the number of devices in a microsegment

(ロ) (四) (三) (三) (三) (三) (○) (○)

Effectiveness


19% and 43% reduction in exploitability score[2] and network exposure[3].

▲ 王 ▶ 王 = 少へ
slide 21 of 27

Case study: Mirai

65.85% attack surface reduction against an infected Belkin Camera

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

slide 22 of 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

From	То		
HP Envy Printer	Laptop		
Samsung Smart Cam	Belkin Motion Sensor		
Samsung Smart Cam	Samsung Galaxy Tab		
Belkin Motion Sensor	Samsung Smart Cam		
Insteon Camera	Samsung Galaxy Tab		
Samsung Galaxy Tab	Samsung Smart Cam		

Only 2.16% of the network flows were blocked due to functional microsegmentation

We also identified some flows in dataset that are *likely* malicious:

- HP Envy Printer \rightarrow Laptop
- Insteon Camera \rightarrow Samsung Galaxy Tab
- Belkin Motion Sensor \leftrightarrow Samsung Smart Cam (?)

b 4.

4 D b

ヨト ヨヨ わへで

2 Prob

- Requirements
- Existing solutions

Microsegmentation

- System design
- Transparent microsegmentation

Evaluation

・ロト・西ト・ヨト・ヨー うへぐ

slide 24 of 27

Transparent Microsegmentation in Smart Home IoT Networks

- Introduced a novel edge cloud architecture to secure smarthome IoT networks against an internal adversary via microsegmentation.
- Implemented one transparent microsegmentation strategy according to functional groups.
- Evaluated our approach on 3 different topologies using different network exploitability metrics.
- In the best case, we acheived a 65.85% attack surface reduction against a Mirai-infected webcam at the cost of blocking 2.16% of the otherwise-accepted flows in the network.

- Introduced a novel edge cloud architecture to secure smarthome IoT networks against an internal adversary via microsegmentation.
- Implemented one transparent microsegmentation strategy according to functional groups.
- Evaluated our approach on 3 different topologies using different network exploitability metrics.
- In the best case, we acheived a 65.85% attack surface reduction against a Mirai-infected webcam at the cost of blocking 2.16% of the otherwise-accepted flows in the network.

- Introduced a novel edge cloud architecture to secure smarthome IoT networks against an internal adversary via microsegmentation.
- Implemented one transparent microsegmentation strategy according to functional groups.
- Evaluated our approach on 3 different topologies using different network exploitability metrics.
- In the best case, we acheived a 65.85% attack surface reduction against a Mirai-infected webcam at the cost of blocking 2.16% of the otherwise-accepted flows in the network.

- Introduced a novel edge cloud architecture to secure smarthome IoT networks against an internal adversary via microsegmentation.
- Implemented one transparent microsegmentation strategy according to functional groups.
- Evaluated our approach on 3 different topologies using different network exploitability metrics.
- In the best case, we acheived a 65.85% attack surface reduction against a Mirai-infected webcam at the cost of blocking 2.16% of the otherwise-accepted flows in the network.

《ロ》《圖》《臺》《臺》《唐》 臺目 のへで ks slide 25 of 27

- Introduced a novel edge cloud architecture to secure smarthome IoT networks against an internal adversary via microsegmentation.
- Implemented one transparent microsegmentation strategy according to functional groups.
- Evaluated our approach on 3 different topologies using different network exploitability metrics.
- In the best case, we acheived a 65.85% attack surface reduction against a Mirai-infected webcam at the cost of blocking 2.16% of the otherwise-accepted flows in the network.

References I

A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath, and V. Sivaraman, "Classifying IoT devices in smart environments using network traffic characteristics," *IEEE Trans. Mobile Comput.*, vol. 18, no. 8, 2019.

O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, "SoK: Security evaluation of home-based IoT deployments," in IEEE S&P, 2019.

Transparent Microsegmentation in Smart Home IoT Networks

slide 26 of 27

..... Thanks!

▲□▶▲@▶▲≧▶▲≧▶ Ξ|= ∽੧<♡

HotEdge'20

Transparent Microsegmentation in Smart Home IoT Networks

slide 27 of 27