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- Background

0 Deep-learning based FR: outperforms humans in LFW benchmark.
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- Background

[0 Basic face recognition (FR) flow:

Training Dataset

@: FR model training @): Face detection and alignment 3): Feeding probes into FR
model @): Extracting face representations. G): Comparing and determine the identity.
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- Motivations

O Deploying FR in real-world scenarios is still challenging:

— Vast variances between training data and test data.
* Head poses
* lllumination
» Visual quality

— May result in significant accuracy drop!
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MS-Celeb-1M dataset. Faces in different deployed scenarios!t!

[1]Ding et al. Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition




- Motivations

0 How to build a robust FR system in real-world scenarios?
— Collect more training data from the target scenario and then fine-tune the FR models.

— Need to label training data!
« Labor-intensive.
« Can not scale in reality.

0 Our solution:
— Use unsupervised online learning to adapt the targeted scenarios.
— Leverage edge computing paradigm to natively solve the scalability issue.




- Unsupervised Online-learning

[0 Generate training data from the deployed scenario automatically.
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Figure 4: Example of triplets generation.

[1] Schroff et al. Facenet: A unified embedding for face recognition and clustering
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- SaFace System

0 SaFace workflow:
— (A) Model pre-training
— (B) Face detection& tracking
— (C) FR inference
— (D) Triplet generation
— (E) Online learning
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- SaFace System

0 System overview
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- Scenario-aware Stage

0 Context-aware scheduling
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Figure 5: Context-aware Scheduling




- Scenario-aware Stage

0 Context-aware scheduling
— R¢ : Video frames rate.
— N¢: The maximum number of cameras.
— Npmax - Maximum number of probes contained in a frame.
— Ng : Maximum number of probes can be processed in a time interval At = 1/R.
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— Bax - Maximum batch size.
— a:. A pre-defined coefficient to adjust effective computation utilization.

— B, : Optimal runtime batch size of online-learning.
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- Prototype

0 System prototype
— Camera node: Hisilicon Hi3516CV500 IP Camera.
— Edge node: A desktop PC with Intel i7-6700k CPU and Nvidia GTX1080 GPU.
— Cloud: A GPU server with 4x GTX1080Ti.

0 Communication
— TP-Link WDR5620 router.
— 100Mbps LAN.

Node Platform Processor Computing power | Storage | RAM | GPU memory
loT | HiSilicon Hi3516CV500 IP Camera Soc | 2x ARM Cortex-A7+ 1 NPU 500GOPS 1GB 1GB /

Edge Desktop PC with GTX1080 GPU Intel i17-6700k 8.8 TFLOPS 1ITB | 16GB 8GB

Cloud GPU server with 4x GTX1080TI Intel 19-7960x 46 TFLOPS 2TDB 64GB 11GB




- Evaluation

] Dataset visualization

Training Test

Scene 0

Scene 1

Pang et al. Cross-domain adversarial feature learning for sketch re-identification.




- Evaluation

[0 Baseline algorithm:
— SphereFacel!!

0 Accuracy improvement with online-learning.

Table 1: Face verification accuracy (%).
Scenariol Scenario?
Model Before After Before After
MobileNet 95.70 96.12 02.69 93.51
Sphere20 06.22 97.13 04.71 96.20
ResNet50 96.74 97.33 95.62 96.43

[1] Deng et al. Arcface: Additive angular margin loss for deep face recognition.




- Evaluation

0 Context-aware scheduling VS. Fixed batch size.
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Figure 9: The comparison of context-aware scheduling (de-
noted as dynamic) and the strategy that uses fixed batch
size (denoted as fixed). The x-axis 1s the fixed batch size,
while the y-axis represents the throughput (triplets/min)




- Evaluation

O Partial Fine-tuning
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Figure 7: Speed-accuracy trade-off (#Scenariol)
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Figure 8: Speed-accuracy trade-off (#Scenar102)




- Discussion & Future work

O Generality of SAFACE
— SAFACE workflow can generalize to many other identification tasks.

[ Better Offloading Strategy
— Offload detection or tracking tasks to edge?

O Different Training Modes
— Always-on or periodical training?
[ Evaluate in More Realistic Scenarios




Thank you!




