

SaFace: Towards Scenario-aware Face Recognition via Edge Computing System

Zhe Zhou^{1,2} Bingzhe Wu¹ Zheng Liang¹ Guangyu Sun^{1,2} Chenren Xu¹ Guojie Luo^{1,2} ¹Peking University, China ²Advanced Institute of Information Technology, Peking University, China

Deep-learning based FR: outperforms humans in LFW benchmark.

■ Basic face recognition (FR) flow:

1: FR model training 2: Face detection and alignment 3: Feeding probes into FR model 4: Extracting face representations. 5: Comparing and determine the identity.

Deploying FR in real-world scenarios is still challenging:

- Vast variances between training data and test data.
 - Head poses
 - Illumination
 - Visual quality
- May result in significant accuracy drop!

MS-Celeb-1M dataset.

Faces in different deployed scenarios^[1]

[1] Ding et al. Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition

□ How to build a robust FR system in real-world scenarios?

- Collect more training data from the target scenario and then fine-tune the FR models.
- Need to label training data!
 - Labor-intensive.
 - Can not scale in reality.

Our solution:

- Use unsupervised online learning to adapt the targeted scenarios.
- Leverage edge computing paradigm to natively solve the scalability issue.

Unsupervised Online-learning

Generate training data from the deployed scenario automatically.

Figure 4: Example of triplets generation.

[1] Schroff et al. Facenet: A unified embedding for face recognition and clustering

SaFace System

□ SaFace workflow:

- (A) Model pre-training
- (B) Face detection& tracking
- (C) FR inference
- (D) Triplet generation
- (E) Online learning

D System overview

Context-aware scheduling

Figure 5: Context-aware Scheduling

Scenario-aware Stage

Context-aware scheduling

- R_C : Video frames rate.
- N_C : The maximum number of cameras.
- N_{Pmax} : Maximum number of probes contained in a frame.
- N_E : Maximum number of probes can be processed in a time interval $\Delta t = 1/R_{C}$.

 $N_E \geq N_C \times N_{P_{max}}$

- B_{max} : Maximum batch size.
- $-\alpha$: A pre-defined coefficient to adjust effective computation utilization.
- $-B_t$: Optimal runtime batch size of online-learning.

$$B^{t} = \max(0, B_{max} \times (1 - \alpha \frac{\sum_{i=1}^{N_{C}} N_{P_{i}}}{N_{E}}))$$

System prototype

- Camera node: Hisilicon Hi3516CV500 IP Camera.
- Edge node: A desktop PC with Intel i7-6700k CPU and Nvidia GTX1080 GPU.
- Cloud: A GPU server with 4x GTX1080Ti.
- Communication
 - TP-Link WDR5620 router.
 - 100Mbps LAN.

Node	Platform	Processor	Computing power	Storage	RAM	GPU memory
IoT	HiSilicon Hi3516CV500 IP Camera Soc	2x ARM Cortex-A7+ 1 NPU	500GOPS	4GB	1GB	/
Edge	Desktop PC with GTX1080 GPU	Intel i7-6700k	8.8 TFLOPS	1TB	16GB	8GB
Cloud	GPU server with 4x GTX1080TI	Intel i9-7960x	46 TFLOPS	2TB	64GB	44GB

Dataset visualization

Pang et al. Cross-domain adversarial feature learning for sketch re-identification.

D Baseline algorithm:

- SphereFace^[1]

Accuracy improvement with online-learning.

• • •						
Model	Scenario1		Scenario2			
IVIOUCI	Before	After	Before	After		
MobileNet	95.70	96.12	92.69	93.51		
Sphere20	96.22	97.13	94.71	96.20		
ResNet50	96.74	97.33	95.62	96.43		

Table 1: Face verification accuracy (%).

[1] Deng et al. Arcface: Additive angular margin loss for deep face recognition.

Context-aware scheduling VS. Fixed batch size.

Figure 9: The comparison of context-aware scheduling (denoted as dynamic) and the strategy that uses fixed batch size (denoted as fixed). The x-axis is the fixed batch size, while the y-axis represents the throughput (triplets/min)

Partial Fine-tuning

Figure 7: Speed-accuracy trade-off (#Scenario1)

Figure 8: Speed-accuracy trade-off (#Scenario2)

Discussion & Future work

Generality of SAFACE

- SAFACE workflow can generalize to many other identification tasks.
- Better Offloading Strategy
 - Offload detection or tracking tasks to edge?
- Different Training Modes
 - Always-on or periodical training?
- Evaluate in More Realistic Scenarios

Thank you