
Scale-out Edge Storage Systems with Embedded Storage Nodes to Get Better Availability and Cost-Efficiency At the Same Time (aka "Embedded Storage at the Edge" Paper)

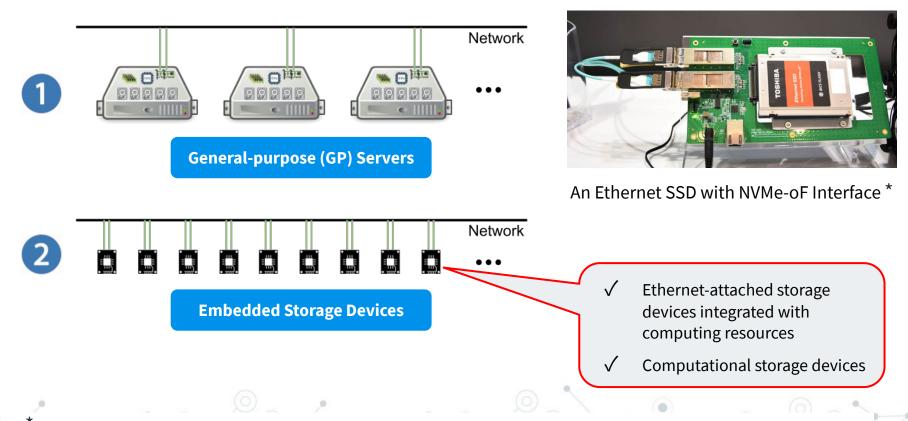
> <u>Jianshen Liu</u>*, Matthew Leon Curry[‡], Carlos Maltzahn*, Philip Kufeldt[§] *UC Santa Cruz, [‡]Sandia National Laboratories, [§]Seagate Technology

> > CENTER FOR RESEARCH IN

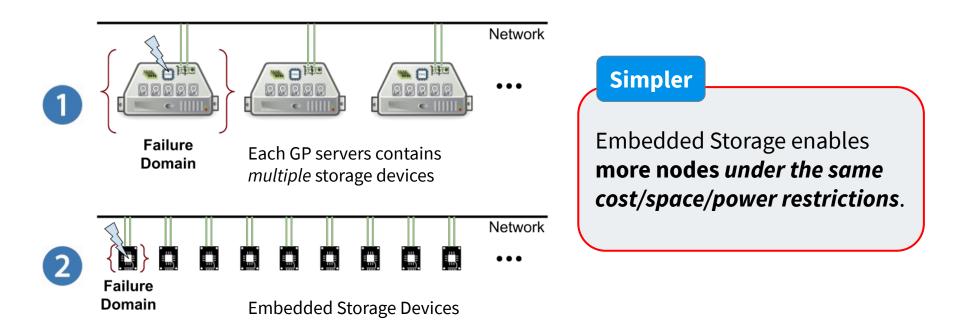
OPEN SOURCE SOFTWARE

Challenges of Data Availability at the Edge

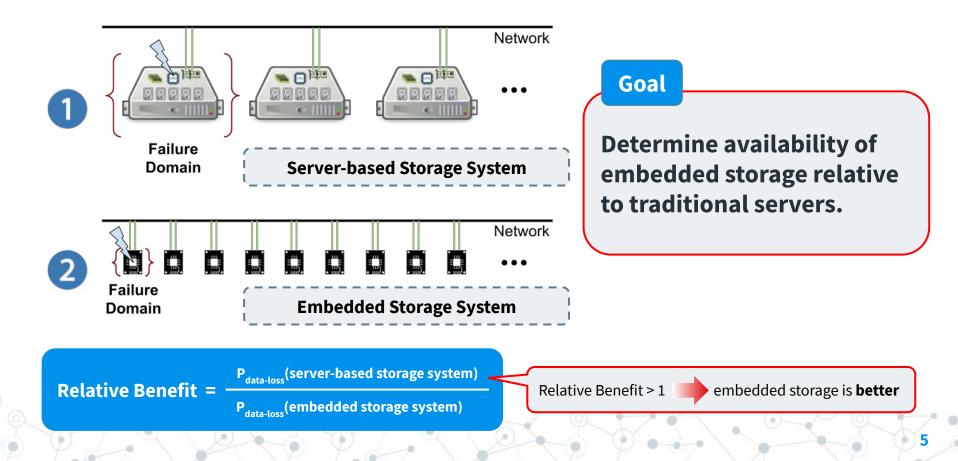
Edge Deployments



"Truck rolls" are expensive!


Environmental Limitations

Embedded Storage

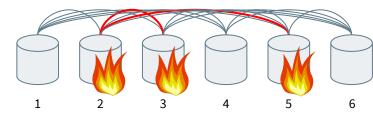

https://www.servethehome.com/marvell-88ss5000-nvmeof-ssd-controller-shown-with-toshiba-bics/

Failure Domains and Data Availability

The more independent failure domains a failover mechanism spans, the more available the data becomes.

The Analytical Model

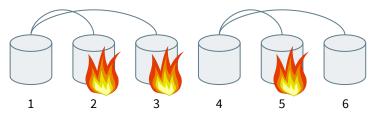
Our Analytical Model – Assumptions of System Configurations


- ◎ The units of deployment are homogeneous.
- O Both systems have the same level of network redundancy and power redundancy for all nodes.
- O Both systems use 3-way replication for data protection.
- O Both systems use the **copyset replication**[§] scheme instead of the random replication scheme.
 It's not our work, but we apply this scheme to our model
- Independence of servers and storage devices. Therefore, we can use *Poisson distribution*^{*} to model the possibilities of hardware failures.

§ Cidon, Asaf, et al. "Copysets: Reducing the frequency of data loss in cloud storage." Presented as part of the 2013 {USENIX} Annual Technical Conference ({USENIX}ATC} 13). 2013.
 * Wikipedia contributors. "Poisson distribution." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 10 Mar. 2020. Web. 31 Mar. 2020.

Copyset Replication vs. Random Replication

Replication Factor **r = 3**


igcap : a node can store copies of the data in the other node

Relationships of Nodes with Random Replication

A node has replica set relationships with 5 nodes

With a sufficient number of data chunks stored, **data loss is nearly guaranteed if any combination of r nodes fail simultaneously.**

Relationships of Nodes with Copyset Replication A node has replica set relationships with <=2 nodes

Reducing the number of replica sets can **reduce the likelihood of data loss under a correlated failure.**

Table 1: List of Model Parameters

Name	Description
m	the number of servers in the storage system
m [′]	the number of embedded storage devices in the storage system
n	the number of storage devices in a server
R_m	the failure rate of a server excluding the storage components
<i>R</i> _d	the failure rate of a block storage device in a server
R_m'	the failure rate of an embedded storage device excluding the storage component
R_d'	the failure rate of the storage component in an embedded storage device
	the scatter width of the copyset replication

 R_d, R'_m , and R'_d .

- \bigcirc $R_m = R'_m$ and $R_d = R'_d$
- \bigcirc $R_d = f \cdot R_m$, where f > 0For hard drives, f could be greater than 2, while for SSDs, f could be less than 1. (We call **f** the ratio of failure rates)
- $m' = c \cdot m$, where $c \ge 1$ \bigcirc (We call *C* the ratio of computing performance)
- <u>n > 2</u> \bigcirc

(We call *n* the ratio of storage performance)

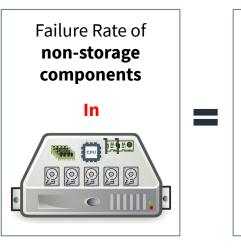

m > 3 (3-way replication) (O)

Table 1: List of Model Parameters

Name	Description
т	the number of servers in the storage system
m [′]	the number of embedded storage devices in the storage system
п	the number of storage devices in a server
R_m	the failure rate of a server excluding the storage components
R_d	the failure rate of a block storage device in a server
R_m^{\prime}	the failure rate of an embedded storage device excluding the storage component
R_d^{\prime}	the failure rate of the storage component in an embedded storage device
W	the scatter width of the copyset replication
We use	"m" to stands for "machine" and "d" for "device" in the notations of R_m

 R_d, R'_m , and R'_d .

 $R_m = R'_m$ and $R_d = R'_d$ \bigcirc

Failure Rate of non-storage components

In

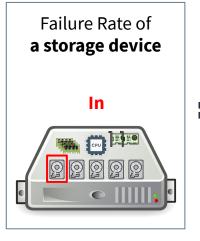


Table 1: List of Model Parameters

Name	Description
т	the number of servers in the storage system
m [′]	the number of embedded storage devices in the storage system
n	the number of storage devices in a server
R_m	the failure rate of a server excluding the storage components
R_d	the failure rate of a block storage device in a server
R_m^{\prime}	the failure rate of an embedded storage device excluding the storage component
R_d^{\prime}	the failure rate of the storage component in an embedded storage device
W	the scatter width of the copyset replication
We use	"m" to stands for "machine" and "d" for "device" in the notations of R_m

 R_d, R'_m , and R'_d .

 \bigcirc $R_m = R'_m$ and $R_d = R'_d$

Failure Rate of the storage component

In

Table 1: List of Model Parameters

the number of servers in the storage system
the number of embedded storage devices in the storage system
the number of storage devices in a server
the failure rate of a server excluding the storage components
the failure rate of a block storage device in a server
the failure rate of an embedded storage device excluding the storage component
the failure rate of the storage component in an embedded storage device
the scatter width of the copyset replication

 R_d, R'_m , and R'_d .

 $\bigcirc \quad R_d = f \cdot R_m, \text{ where } f > 0$

For hard drives, f could be greater than 2, while for SSDs, f could be less than 1.

(We call *f* the ratio of failure rates)

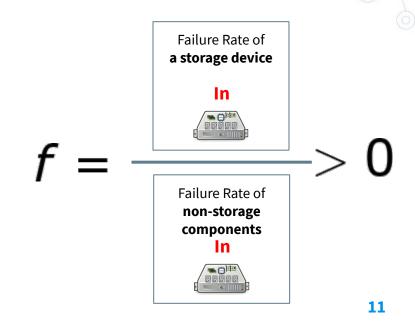
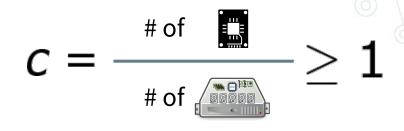



Table 1: List of Model Parameters

number of servers in the storage system number of embedded storage devices in the rage system number of storage devices in a server failure rate of a server excluding the storage nponents
rage system number of storage devices in a server failure rate of a server excluding the storage
failure rate of a server excluding the storage
0
failure rate of a block storage device in a ver
failure rate of an embedded storage device cluding the storage component
failure rate of the storage component in an bedded storage device
scatter width of the copyset replication

 $m' = c \cdot m, \text{ where } c \ge 1$ (We call *C* the ratio of computing performance)

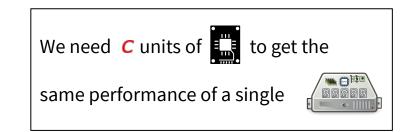


Table 1: List of Model Parameters

Name	Description
m	the number of servers in the storage system
m [′]	the number of embedded storage devices in the storage system
п	the number of storage devices in a server
R_m	the failure rate of a server excluding the storage components
<i>R</i> _d	the failure rate of a block storage device in a server
R_m^{\prime}	the failure rate of an embedded storage device excluding the storage component
R_d'	the failure rate of the storage component in an embedded storage device
W	the scatter width of the copyset replication
6.6 J	the scatter width of the copyset replication "m" to stands for "machine" and "d" for "device" in the notations of

 R_d, R'_m , and R'_d .

◎ n ≥ 2

(We call *n* the ratio of storage performance)

 \ref{linear} is the number of storage devices (\geq 2) in a server.

Table 1: List of Model Parameters

Name	Description
m	the number of servers in the storage system
m'	the number of embedded storage devices in the storage system
п	the number of storage devices in a server
R_m	the failure rate of a server excluding the storage components
R_d	the failure rate of a block storage device in a server
R_m^{\prime}	the failure rate of an embedded storage device excluding the storage component
R_d'	the failure rate of the storage component in an embedded storage device
W	the scatter width of the copyset replication
We use "m" to stands for "machine" and "d" for "device" in the notations of R_d , R'_m , and R'_d .	

 \bigcirc *m* \geq **3** (3-way replication)

need at least 3 servers for 3-way replication

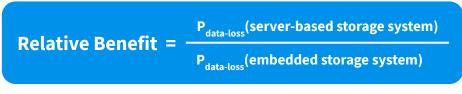
Table 1: List of Model Parameters

Name	Description	
т	the number of servers in the storage system	
m'	the number of embedded storage devices in the storage system	
n	tł	
R_m	the How sensitive is the Relative	
	• Benefit to these parameters?	
R _d	Benefit to these parameters?	
R _d		
R_d R'_m	the failure rate of an embedded storage device	
R'_m	the failure rate of an embedded storage device excluding the storage component	
	the failure rate of an embedded storage device	

- \bigcirc $R_m = R'_m$ and $R_d = R'_d$

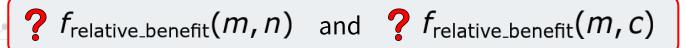
- ◎ n ≥ 2

(We call *n* the ratio of storage performance)

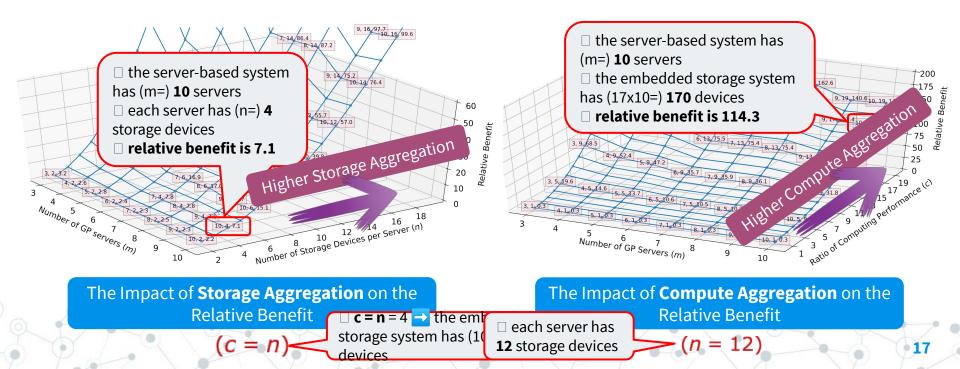

 \bigcirc *m* \geq **3** (3-way replication)

Evaluation

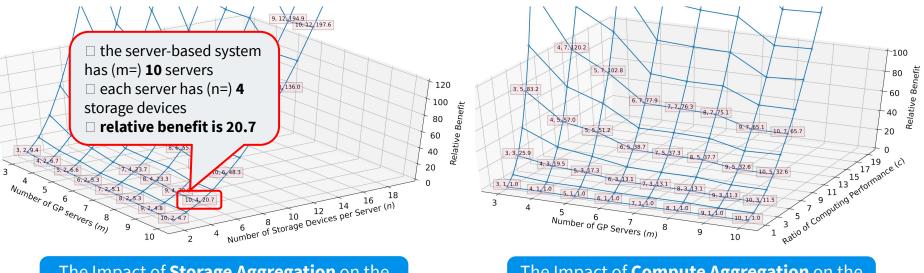
As an example, we evaluate the **Relative Benefit** of embedded storage regarding the data unavailability caused by failures of exactly **three** components.


A component can be:

- A server
- An embedded storage device
- A storage component in a failure domain



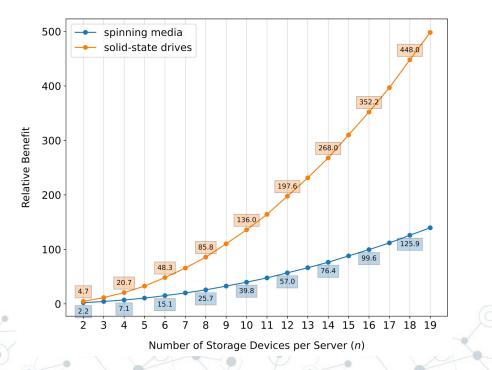
- *f* (the failure rate of the storage component over the failure rate of the non-storage components)
- \checkmark (the number of nodes that have a replica set relationship with a node)
- \rightarrow *m* (# of GP servers)
- → *n* (# of storage devices in a server)
- → C (# of embedded storage device / # of servers)


Evaluation – Spinning Media as Storage

- The failure rate of a storage device is 2x of that of the non-storage components of a server (f = 2) [Vishwanath, et al. "Characterizing cloud computing hardware reliability." 2010]
- \bigcirc The number of nodes that have a replica set relationship with a node is 4 (**w** = 4)

Evaluation – Solid-state Drives as Storage

- The failure rate of a storage device is **0.06x** of that of the non-storage components of a server (**f = 0.06**) [Xu, Erci, et al. "Lessons and actions: What we learned from 10k ssd-related storage system failures." 2019]
- \bigcirc The number of nodes that have a replica set relationship with a node is 4 (**w** = 4)


The Impact of **Storage Aggregation** on the Relative Benefit

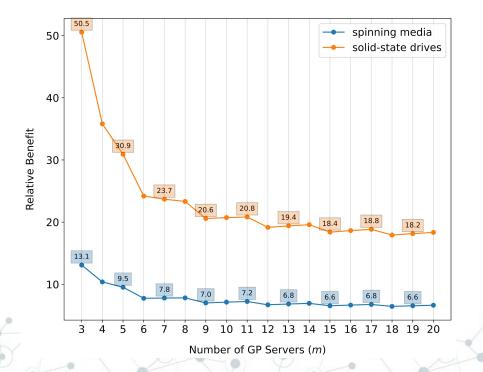
The Impact of **Compute Aggregation** on the Relative Benefit

(n = 12)

Insights (part 1/5)

1. The higher the storage aggregation of a server, the higher the relative benefit of embedded storage.

Server-based Storage System


10 servers with **n** storage devices each, resulting in 10 failure domains.

Embedded Storage System

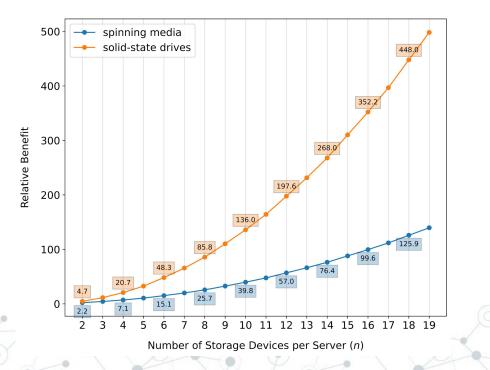
10 x **n** devices, resulting in 10 x **n** failure domains.

Insights (part 2/5)

2. Smaller storage systems are more sensitive to the benefit of embedded storage.

Server-based Storage System

m servers have 4 storage devices each, resulting in **m** failure domains.


Embedded Storage System

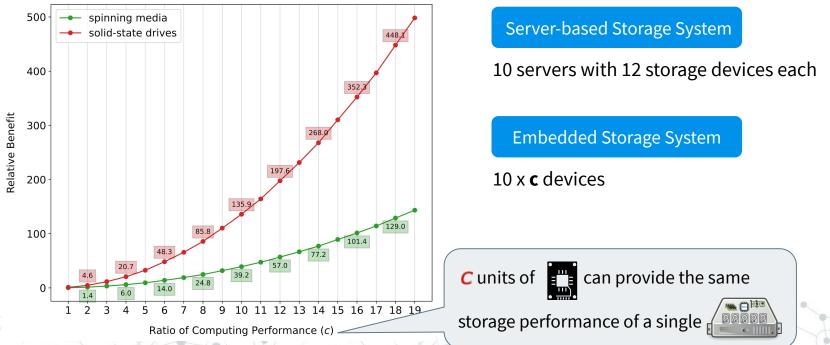
4 x **m** devices, resulting in 4 x **m** failure domains.

The total # of storage devices of the two systems are the same.

Insights (part 3/5)

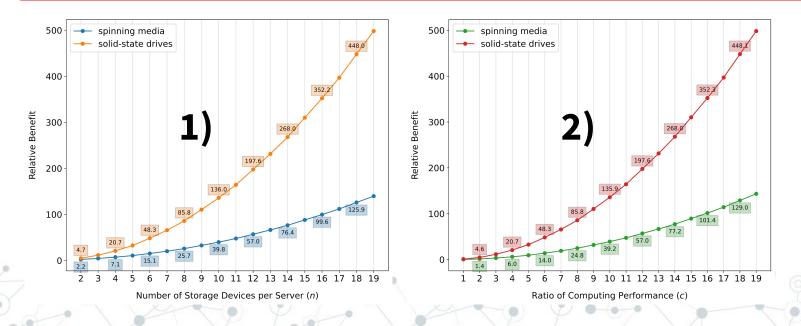
3. The lower the failure rate of a storage device, the higher the relative benefit of embedded storage.

Server-based Storage System


10 servers with **n** storage devices each, resulting in 10 failure domains.

Embedded Storage System

10 x **n** devices, resulting in 10 x **n** failure domains.


Insights (part 4/5)

4. The higher the compute aggregation of a server, the higher the relative benefit of embedded storage.

Insights (part 5/5)

- 5. The relationship between the resource aggregation and the relative benefit is nonlinear.
 - 1) Doubling the storage aggregation of a server could triple the relative benefit.
 - 2) Doubling the compute aggregation of a server could quadruple the relative benefit.

Conclusions

Embedded storage devices are simpler, making it is possible to have more independent failure domains.

Storage systems with more independent failure domains can improve data availability.

A great design point, but many unsolved challenges!
 (e.g., explore the balance between availability and storage performance)

This work was supported in part by NSF grants OAC-1836650, CNS-1764102, and CNS-1705021, and by the Center for Research in Open Source Software (cross.ucsc.edu). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Baskin Engineering

Thank you! Questions?

Jianshen Liu

<u>jliu120@ucsc.edu</u>

https://cross.ucsc.edu (Eusocial Storage Devices)

⊞SS

CENTER FOR RESEARCH IN OPEN SOURCE SOFTWARE

An Example of Copyset Replication

- O A **copyset** is a set of nodes that stores all of the copies of a data chunk.
- **Scatter width** is the number of nodes the data of a node can be replicated to.
- Example:
 # of nodes (m) replication factor (r) scatter width (w)
 9
 3
 4
 Copysets:
 $\{1,2,3\}, \{4,5,6\}, \{7,8,9\}\$ $\{1,4,7\}, \{2,5,8\}, \{3,6,9\}$ $\frac{w}{r-1} = 2$ permutations
 © Each permutation increases the scatter width of a node by r-1

• The number of copysets is $\frac{w}{r-1}\frac{m}{r}$

Copyset Replication vs. Random Replication

O Number of copysets (3-way replication):

Copyset Replication	Random Replication
(CR)	(RR)
$\frac{w}{r-1}\frac{m}{r} = \frac{wm}{6}$	$\binom{m}{3} = \frac{m(m-1)(m-2)}{6}$

 $\frac{\# \text{ of copysets using RR}}{\# \text{ of copysets using CR}} = \frac{(m-1)(m-2)}{w}$

With a sufficient number of data chunks stored, random replication creates a failure domain for **any combination of r nodes** (r is the replication factor).

Our Analytical Model – Modeling the Two Systems

The possibility of data loss of server-based storage systems

$$P(\text{failures of k servers}) = \frac{R_m^k e^{-R_m}}{k!}$$

$$P_{gp} = \sum_{k=3}^m P_m(k) + \sum_{j=3}^{mn} P_d(j)$$

$$+ \sum_{k=2}^m \sum_{j=1}^{mn} P_{m,d}(k,j) + \sum_{j=2}^{mn} P_{m,d}(1,j)$$

where

$$P_m(k) = P(\text{failures of } k \text{ servers}) \times \frac{N_m(k)}{\binom{m}{k}}$$

$$P_d(j) = P(\text{failures of } j \text{ storage devices}) \times \frac{N_d(j)}{\binom{mn}{j}}$$

 $P_{m,d}(k,j) = P(\text{failures of } k \text{ servers})$ $\times P(\text{failures of } j \text{ storage devices})$ $\times \frac{N_{m,d}(k,j)}{\binom{m}{2} \times \binom{mm}{2}}$

The possibility of data loss of embedded storage systems $P(\text{failures of j storage devices}) = \frac{R_d^{j} e^{-R_d}}{i!}$ $P_{es} = \sum_{k=3}^{m} P'_{m}(k) + \sum_{i=2}^{m} P'_{d}(j)$ $+\sum_{k=2}^{m'}\sum_{i=1}^{m'}P'_{m,d}(k,j)+\sum_{i=2}^{m'}P'_{m,d}(1,j)$ where $P'_{m}(k) = \frac{{R'_{m}}^{k} e^{-R'_{m}}}{k!} \times \frac{N'_{m}(k)}{m'}$ $P_d'(j) = \frac{R_d^{\prime j} e^{-R_d^{\prime}}}{j!} \times \frac{N_d^{\prime}(j)}{\ell^{m^{\prime}} \gamma}$ $P'_{m,d}(k,j) = \frac{{R'_m}^k e^{-R'_m}}{k!} \times \frac{{R'_d}^j e^{-R'_d}}{j!} \times \frac{{N'_{m,d}(k,j)}}{{\binom{m'}{j}} \times {\binom{m'}{j}}} \bigcirc$