

Vanderbilt University



# Cost-effective Hardware Accelerator Recommendation for Edge Computing

Xingyu Zhou, Robert Canady, Shunxing Bao, Aniruddha Gokhale DOC-VU Group, Dept of EECS Vanderbilt University, Nashville, TN 37235





- Current Edge HW Acc Status
- Challenge for HW Acc Deployment
- Solution Overview
- Case Study
- Conclusion





- Accelerating computations
- For general or specific task settings
  - CPU (most general)
  - GPU (better suited for stream processing)
  - FPGA (general in thoery but difficult to use)
  - ASIC (specific)













- Heterogeneous data sources from sensors;
- More compute intense processing requirements especially from image or video;
- Realistic physical constraints(power,size,cost. etc)











Too many different hardware devices potential for edge

 Current selection and evaluation research either single device or even low-level circuit design

 Need to understand applicability of these accelerator technologies for at-scale, edge-based applications



- Latency => Application Response
- Power => Electricity Cost
- Commercial Cost => Market Price

MAO et al.: SURVEY ON MOBILE EDGE COMPUTING: COMMUNICATION PERSPECTIVE

|                 | NFC                  | RFID                                              | Bluetooth | WiFi                      | LTE                                 | 5G                                                                             |
|-----------------|----------------------|---------------------------------------------------|-----------|---------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Max. Coverage   | 10cm                 | 3m                                                | 100m      | 100m                      | up to 5km                           | Excellent coverage                                                             |
| Operation Freq. | 13.56MHz             | LF: 120-134kHz<br>HF: 13.56MHz<br>UHF: 850-960MHz | 2.4GHz    | 2.4GHz, 5GHz              | TDD: 1.85-3.8GHz<br>FDD: 0.7-2.6GHz | 6-100GHz                                                                       |
| Data Rate       | 106, 212,<br>414kbps | Low (LF) to<br>high (UHF)                         | 22Mbps    | 135Mbps<br>(IEEE 802.11n) | DL: 300Mbps<br>UL: 75Mbps           | Indoor/dense outdoor:<br>up to 10Gbps<br>Urban/suburban:<br>> hundreds of Mbps |

TABLE III CHARACTERISTICS OF TYPICAL WIRELESS COMMUNICATION TECHNOLOGIES

V. Sze, T.-J. Yang, Y.-H. Chen, J. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," *Proceedings of the IEEE*, vol. 105, no. 12, pp. 2295-2329, December 2017.







- Define One HW Acceleration Strategy:

   (1) HW Acceleration Task Realization on Device
   (2) HW Acceleration Device Placement (location,time)
- Minimize deployment cost under constraints Current goal: minimize cost with design latency limit  $\min_{dev \in ListHW} \sum costHW_{dev} * nHW_{dev} + costP(dev, T_{cycle})$

subject to:

$$\begin{split} T_{\rm app}(dev) \leqslant t_{\rm target} & costP(dev,T_{cycle}) = P_{\rm app}(dev,T_{cycle}) * costElec \\ P_{\rm app}(dev,T_{\rm cycle}) = P_{\rm idle}(dev) * T_{\rm cycle} \\ & + P_{\rm perinf}(dev) * muFreq_{\rm in} * T_{\rm cycle} \end{split}$$





## 1. Application design

choose applications that can be accelerated *ResNet50 (Classification) + TinyYolo (Detection)* 

# 2. Hardware configuration go through design flows

Table 1: Device-level Acceleration Deployment Workflows for Different Hardware Platforms

| Design Flow | Edge CPU          | Embedded GPU       | FPGA          | ASIC      | Server GPU            | Server CPU       |
|-------------|-------------------|--------------------|---------------|-----------|-----------------------|------------------|
| Hardware    | Raspberry Pi 3 b+ | NVIDIA Jetson Nano | Avnet Ultra96 | Intel NCS | NVIDIA GTX1060 6Gb    | AMD FX-6300      |
| ResNet-50   | Tensorflow/Keras  | TensorRT           | DNNDK         | OpenVINO  | Tensorflow/Keras/Cuda | Tensorflow/Keras |
| Tiny Yolo   | Darknet           | Darknet/TensorRT   | DNNDK         | OpenVINO  | Tensorflow/Keras/Cuda | Tensorflow/Keras |



- 3. Per-Device Benchmarking record time and power consumption
- 4. Deployment Cost Approximation
  - = devCost (hardware market price)
  - + deployCost (for design topology and time cycle)
- 5. Choose device met requirements



SELECT



Applicability Test on Relative High Dimension Data: Object Classification tasks on a set of 500 images with a resolution of 640 \* 480. Vehicle Detection tasks on a road traffic video consisting of 874 frames with a resolution of 1280 \* 720.

Table 2: Response Time  $(T_{hw})$  for Object classification Task using ResNet-50 (Unit: Second)

| Time | RPi   | JetsonNano | Ultra96 | NCS   | GTX1060 | FX6300 |
|------|-------|------------|---------|-------|---------|--------|
| mean | 2.089 | 0.133      | 0.029   | 0.218 | 0.039   | 0.268  |
| std  | 0.058 | 0.016      | 0.001   | 0.003 | 0.005   | 0.006  |

Table 3: Power Consumption for Object classification Table 5: Power Consumption for Traffic Detection using using *ResNet-50* (Unit: Watt)

| Power | RPi | JetsonNano | Ultra96 | NCS | GTX1060 | FX6300 |
|-------|-----|------------|---------|-----|---------|--------|
| Idle  | 1.8 | 2.2        | 6.2     | 0.4 | 10      | 72     |
| Infer | 4.8 | 5.6        | 7.6     | 1.9 | 122     | 145    |

Table 4: Response Time  $(T_{hw})$  for Traffic Detection Task using *Tiny Yolo* (Unit: Second)

| Time | RPi   | JetsonNano | Ultra96 | NCS   | GTX1060 | FX6300 |
|------|-------|------------|---------|-------|---------|--------|
| mean | 2.874 | 0.096      | 0.023   | 0.238 | 0.059   | 0.217  |
| std  | 0.068 | 0.008      | 0.001   | 0.003 | 0.002   | 0.076  |

*Tiny Yolo* (Unit: Watt)

| Power | RPi | JetsonNano | Ultra96 | NCS | GTX1060 | FX6300 |
|-------|-----|------------|---------|-----|---------|--------|
| Idle  | 1.8 | 2.3        | 7.4     | 0.4 | 10      | 72     |
| Infer | 4.8 | 11.7       | 9.2     | 2.1 | 122     | 150    |



## **At-Scale Approximatation**





Figure 1: Three-level Design Topology Layout: (1) Top:Cloud servers; (2) Intermediate:3 Fog groups include communication control and some computation power; (3) Bottom:4 Edge nodes in each fog group closest to sensors and data needs to be processed.

 $R_{\text{dev}} \sim N(muFreq_{\text{dev}} * nHW_{\text{dev}}, stdFreq_{\text{dev}}^2)$  $L_{\text{dev}} \sim N(muFreq_{\text{in}}, stdFreq_{\text{in}}^2)$ 

$$Pr(R_{dev} - L_{dev}) > conf$$

Design Topology Potential Scenarios:

- 1. unmanned shopping using object
- classification
- 2. surveillance using detection

Reliability-Driven System Deployment Goal:

- should guarantee to handle no less than half (2 of 4) of input loads from every fog group (3 groups) with an overall confidence level of 99%
- edge node inputs denoted by a normal distribution ( assumed identical for all nodes in this topology )
- edge node inputs with relatively high uncertainty level with stdFreq\_in = muFreq\_in ( inputCV=1.0 )





FX6300

0.217

0.076

Table 2: Response Time  $(T_{hw})$  for Object classification Task using *ResNet-50* (Unit: Second)

| Time | RPi   | JetsonNano | Ultra96 | NCS   | GTX1060 | FX6300 |
|------|-------|------------|---------|-------|---------|--------|
| mean | 2.089 | 0.133      | 0.029   | 0.218 | 0.039   | 0.268  |
| std  | 0.058 | 0.016      | 0.001   | 0.003 | 0.005   | 0.006  |

Table 4: Response Time  $(T_{hw})$  for Traffic Detection Task using Tiny Yolo (Unit: Second)









Settings: Increasing input strength for a 24-month deployment cycle

 Why hardware accelerator necessary? CPUs: RaspPi@edge, FX6300@cloud worst
 Power is critical for long-term two most cost-efficient options for edge: Ultra96 (FPGA)

Jetson Nano (embedded GPU)

3. Device tradeoff:

FPGAs hard to use,NCS not powerful





Presents a simple evaluation procedure as a recommendation system to help users select an accelerator hardware device for their applications deployed across the cloud to edge spectrum

### Cons:

A pure strategy of one single type of device is considered
 One single type of acceleration task is set for all devices
 Plan to investigate at-scale deployment of RNN and GAN in edge scenarios;

3. Assume an ideal device task scheduling and device parallelism

4. Have not taken interference effects between device executions into consideration





