
An Edge Datastore Architecture For
Latency-Critical Distributed Machine

Vision Applications
Arun Ravindran and Anjus George

UNC Charlotte

1

Distributed Vision at the Edge - Smart City
Warn pedestrian about potential
accidents

Automatically detect and alert drunk
driving

Effective bias free law enforcement

Source: YouTube 2

https://docs.google.com/file/d/1WomFO9Lt4dRC3X3hMxCQnQPDSvyi2kfS/preview

System Architecture

Cameras

End nodes

Edge Servers

Cloud

3

Vision Edge Datastore
● Applications at Edge

analyzes data collected by
End nodes to detect events
○ Need data store that persists data

gathered from multiple end nodes
○ Able to specify latency required

● Challenge - how to maintain
low latency at edge ?
○ Latency sources - wireless

channel, bufferbloat, read/write
latency 4

Latency CDF witn node scaling

Cloud vs Edge
● Data Center vs. “Field”

○ Security, Fault tolerance

● Wired vs. Wireless
○ Bandwidth, latency

● Homogeneous vs. Heterogeneous
○ ARM/x86 SoCs, Multiple storage and networking technologies

● Distributed data storage vs. Distributed data at source
○ Big, fast, distributed data
○ latency critical/sensitive applications

5

Prior Work at Edge Storage

● VisFlow Project (Microsoft)
● PathStore Project (Toronto)
● Cachier Project (CMU)

6

Our Design philosophy at Edge

● Application specific systems
○ Tension between specificity and generality

● Autonomous operation
○ Techniques from Control Theory and AI (ML, Deep Learning,

Reinforcement Learning)

7

Key idea - Exploit application characteristics

● Two type of data - image feature vectors (1-10 kB) and
image keyframes (100 - 500 MB)

● Feature vectors - latency critical
○ Tracking, behavioral analysis

● Keyframes - latency sensitive
○ Archival

● Feature vector latency by sacrificing keyframe accuracy
○ Need to do this dynamically since channel interference and scene

content is dynamic

8

Key idea - Latency control knobs

● Control knob 1: Keyframe TX
○ Controls the rate at which keyframes are transmitted
○ Low egress rates could result in bufferbloat

● Control knob 2: Keyframe Sim
○ Drops similar keyframes to maintain buffer length
○ Accuracy vs. Latency trade off
○ Needs a similarity metric

9

Vision Edge Data Store - Design

● End node processing generates key frames feature and
feature vectors

● Inserted with timestamp and node ID into transmit buffer
● Data transmitted to Edge server
● Aggregate and persist data at Edge server

○ Low latency store (RocksDB, RAMCloud)

● End node controls keyframe Tx rate and buffer length
○ Scalable since controllers are independent

10

Prototype Evaluation Platform
● Emulation platform

○ LXC containers for nodes
○ NS3 network simulator for WiFi channel
○ Client/Servers implemented in Golang
○ Image similarity (SSIM) with Python sckit-image
○ qperf for latency measurements

● Controller
○ Bang-bang (on/off) control

● Data
○ 500kB keyframes, 4 kB feature vectors
○ External interference simulated via Poisson process (5s TX, λ = 30s)

11

Results

12

Latency CDF - Keyframe TX control Latency CDF - Keyframe Sim control

Keyframe similarity (SSIM) - Pedestrian crash video

Accuracy vs. Latency
tradeoffs

13

On going work

● Experimental characterization of interference, keyframe
similarity, application requirements

● Internal interference - scheduling problem?
○ Distributed - client-server vs. peer-to-peer
○ Dependence on scene dynamics

● Control / Learning algorithms

14

Request Feedback

● On use of WiFi at Edge for latency critical apps?
● On differences between cloud and edge storage?
● What would you like to see experimentally validated?
● How should latency/accuracy requirements be

communicated from Edge app. to camera end nodes?
● Are there other edge applications that are similar?
● What edge specific security issues should we consider?
● Any experience with simulating NS3 802.11ac with

containers? 15

