A Side-channel Attack on HotSpot
Heap Manhagement

Xiaofeng Wu, Kun Suo, Yong Zhao, Jia Rao
The University of Texas at Arlington

IIIIIIIIIIII

HotCloud’18 TEXAS July 9, 2018

ARLINGTON

Side-Channel Attack

* Attack based on information gained from the implementation of a
computer system

e Shared cache
Steal or infer secrets

* Timing
* Power consumption Infer user activities to

. launch well-timed attack
e Acoustic measurement

Attack shared clock in multi-tenant systems to
manipulate users’ time measurement

Garbage Collection in HotSpot JVM

] o Parallel Scavenge
d n‘im 0 1 m ° °
i B J:"h : Minor GC 1‘0 : Major GC
<— younggen —»| < old gen - |

\/’

<—— Stop The World ——>
GC threads

—
—
—
—

« Each individual GC shouldn't take too long - large heap
« Total time spent in GC shouldn't be too much - small heap, too frequent GC

Adaptive Heap Sizing in PS GC

o T m__—_——_——_————— N

* Three ObjECtiVES :[Pause time] Shrink heap l :
* Meet pause time target puiigtiath dipliolalntatilele Bl

* Meet throughput goal :[Throughput] Expand heap T |
* Minimize memory footprint ,—_—_-_T ____________________

:[Footprint] Shrink heap ‘l

JVM automatically determines the heap size
in the range of the initial (-Xms) and the
maximum (-Xmx) heap sizes

Time is used as an indirect measure for
memory efficiency

Minor and Major GC

1 H em alloc . _/ Check free space _/1st Alloc in\
Vulnerability i ota e
'Fail y Not enough A 0
L | T2 e »Major GCr----ggr-""-" E Eai

-—— ey

l . e) 2nd Al !
[MinorGCI mutator I Major GC ImutatorIMinorGC](mutator I Major GC] - > : (nYoung OGCenln Ma]0r GC j«----:
T {>|>T >T | stepmust | y Fail

T3 T4 I be performed| 3rd Alloc in" Fail
! ' (0ld cen) Major GC

Minor GC cost = T2/ (T1+T2) —»®» Minor mutator time = —— Minor GC time

: step may : 5th Alloc in '_:?'_I 4th Alloc in
Major GC cost = T4 /(T3+T4) > Major mutator ime ——> Major GC time | be performed, Old Gen Young Gen

------- \ Fai 4

; Out of Memory

JVM infers heap efficiency based on measured JVM throws an out-of-memory (O0M) error if five
lengths of minor and major GCs, and adjusts GCs fail to resolve the memory allocation failure
heap size accordingly

Shared Clock

GC starts GC ends
-\ @ @S 5
[[[[:
| @ —t--ccccmenn- —e | + + = wall-clock time
| , | - O+@
: >| : >| ®+@ = virtual time
r JVMis | JVMisnot, JVMis
' running ' running ' running !
= >
Measured GC time
gettimeofday () gettimeofday ()

Time measurement can be inaccurate in the
presence of CPU multiplexing

Three Types of Attacks

* Cause OOM errors
* Prevent JVM from expanding the heap in 5 GCs

* Cause excessive GC
e Cause bloated heap

OOM Attack

 Attack pause time target

* When there is a spike in memory demand and allocation failure, attack major

GC measurement

* Dilated major GC time cause

[Pause time J Shrinkheap‘

the heap to shrink, missing the

opportunity to avoid OOM errors

Excessive GC Attack

et s W I
(o [WnorG0] mueor (Waoro) mutetor [Winor0) mureto funereo) meor) Wareo)
T—»I—> ----------------------- - [—p
T3 / T4 ! T6
™ T2 Ll | — |
e — ; :
[mutatorIMinorGC% mutator I MajormutatorIM GCImutatorIM GCI mutator I Major
T3 ” v & - }
* Similar to OOM attack but more general Target major GC,

dilate its time
* Old generation have a tendency to drop quickly, and the

decrement of heap size results in more GCs

Memory Bloat Attack

e i Violate throughput target
S Y AU UL WO N - — e
T3 T4 T6

y , [Throughput J Expand heapt
LA . Y L — —
MGC mutator I Major GC Imutator Minormutator Minor mutator I Major GC] [FOOtprint J Shrink heap X

T""TT’T— ———————————————— T ; ''''''''''''''' *"’T—J
11 / 11
S Throughput |= ,
Throughput 179 — gnp l T1+ T2}

Attack minor GC to prevent the heap from

shrinking even memory demand drops
10

Launch Attacks

* Proof-of-concept attacks

* Modify JVM source code to manipulate GC time in the adaptive sizing algorithm

* Realistic attacks
e Use eBPF to monitor 1ibjvm. so to obtain GC thread ID and slowdown a specific type of GC

e Use cgroup to limit the CPU usage of GC threads and hence dilate GC time

e Results

e Crash a Java-based micro-benchmark with OOM errors
* Cause ~65% more GC time in DaCapo

* Inflict up to ~400% memory bloat in SPECjvm2008

11

OOM Attack

* Attack major GC measurement

* JAVA _OPTION=
e -XX:+UseAdaptiveSizePolicy
e -XX:+UseParallelGC

* -XX:+UseParallelOldGC
e _XX:ParallelGCThreads=10 A micro-benchmark with a sudden spike in
memory demand

ArrayDeque

<+«— 50Bytes <«— 20 MB

* -Xms =32m-Xmx = 2g

[Pause time J Shrinkheapl

* Both proof-of-concept and realistic
attacks crash the micro-benchmark

Discussion

* Essence of the problem
* Heap size should be determined by the characteristics of a Java program
* But heap efficiency is measured by GC time, an indirect measure
e External CPU contention can affect internal heap management

* Many programs designed for dedicated systems are vulnerable to
similar attacks in multi-tenant systems
e CPU multiplexing = wall-clock time or virtual time?
* VMs, containers, conventional processes
* Linux jiffies and userspace gettimeofday track wall-clock time
* Linux CFS uses steal clock to track virtual time for thread scheduling

See our [Suo-SoCC17] paper for another issue caused by time discontinuity 13

Is this a real problem?

. No * Yes
_ * |In theory, if not measuring
* No e.V|d.ence that many absolute latency, time
applications suffer from measurement that is only
inaccurate time measurement. relevant to a particular

program or to measure the
relative progress of program
threads, should use virtual

e Even so, the effect is random
and universally distributed
among applications.

time
* Our attack is sophisticated and e This could be the source of
needs to target a specific type erroneous program behavior,
of GC, not easy. unpredictability and
inefficiency

Should we devise a completely isolated virtual time
interface for individual programs/VMs/containers ? 14

Thank you!
Questions?

xiaofeng.wu@mavs.uta.edu

Backup Slides ...

A Realistic Attack

* All experiments were conducted on a 64-core machine using
OpendDK 1.8 and Linux 4.15.0.

* The JVM was configured with 10 GC threads.

 Benchmark
« Dacapo: h2
« SPECjvm2008: mpegaudio

Pause time-oriented Attack (excessive GC)

* A realistic attack using eBPF
 Benchmark: h2 from Dacapo
* The initial and maximum heap sizes: 16 MB and 900 MB

* The maximum pause time is set to 100 ms
Baseline | Attacked | Overhead

minor GC 1223 2033 66.23%
major GC 28 46 64.29%
total GC 1251 2079 66.19%

GC CPU time(sec) 132.93 250.03 88.09%

The attack shrinks the heap, causing 88%
more GC time

Cont’'d - Pause time-oriented

* We choose h2 from Dacapo-9.12-MR1-bach as a case study
« execute a number of transactions
« set the maximum pause time as 100 ms

Baseline | Attacked | Overhead

minor GC 1187 1971 66.05%
major GC 30 49 63.33%
total GC 1217 2020 65.98%

GC CPU time(sec) 146.59 240.03 63.74%

The overhead induced by the pause time-oriented attack to the micro-benchmark.

Cont’d - Throughput-oriented

(a) Changes of heap size without attack

1600
ArrayDeque 1400 | Used heap before GC — =
Used heap after GC = =-= =

1200 = Heap size

1000 = --- - s
<+—— 50 Bytes

800 [~ -----ee e

600 [—------ - pa A S R
400 : - - - -
200 [dod

e -Xms32m -Xmx32g 0
« Heap size is 1.61x larger et

Size (MB)

1600
1400
1200
1000
800
600
400
. 200

—— e e e e —————————

e \
[throughput } ---1 increase generation* \ _>
\)

Size (MB)

v

footprint -—--

Size (MB)

Size (MB)

Throughput-oriented Attack (memory bloat)

w/0 attack

900
800 |- - - A\ M\,
288:'—" ________________ Heap size

500 - - - - -

300 [----- L
LYW \
200 - - - - - b]--I-I 14
1

100 S Y 1 hdty {_.'_l I_I_

\

Used heap before GC - - - -
Used heap after GC - - -- - -

I
/ r
400 Hf - - - - - R R e
: |

,:,,.,-4-—1.,4_,'/{4//,),/ ,V//'/')////ﬂ///w)/m‘//y'/ﬁ/A//////r

50 100 150 200 250 300 350
Time (s)

under attack

400

900

800 f—-------- O S \{’ ---------------------
700 |- L

600 f[—-- B R TR

500
400 A - -

!

300 Hf----- e R LR
[
|

* A realistic attack using eBPF
* mpegaudio from SPECjvm?2008

* The initial and maximum heap
sizes: 32 MB and 2.5GB

The attack prevents the heap from shrinking
when memory demand drops, causing more
than 400% waste of memory

21

