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Side-Channel Attack

* Attack based on information gained from the implementation of a
computer system

e Shared cache
Steal or infer secrets

* Timing
* Power consumption Infer user activities to

. launch well-timed attack
e Acoustic measurement

Attack shared clock in multi-tenant systems to
manipulate users’ time measurement



Garbage Collection in HotSpot JVM
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« Each individual GC shouldn't take too long - large heap
« Total time spent in GC shouldn't be too much - small heap, too frequent GC



Adaptive Heap Sizing in PS GC
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JVM automatically determines the heap size
in the range of the initial (-Xms) and the
maximum (-Xmx) heap sizes

Time is used as an indirect measure for
memory efficiency



Minor and Major GC
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; Out of Memory

JVM infers heap efficiency based on measured JVM throws an out-of-memory (O0M) error if five
lengths of minor and major GCs, and adjusts GCs fail to resolve the memory allocation failure
heap size accordingly



Shared Clock
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Time measurement can be inaccurate in the
presence of CPU multiplexing



Three Types of Attacks

* Cause OOM errors
* Prevent JVM from expanding the heap in 5 GCs

* Cause excessive GC
e Cause bloated heap



OOM Attack

 Attack pause time target

* When there is a spike in memory demand and allocation failure, attack major

GC measurement

* Dilated major GC time cause

[ Pause time J Shrinkheap‘

the heap to shrink, missing the

opportunity to avoid OOM errors



Excessive GC Attack
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* Similar to OOM attack but more general Target major GC,

dilate its time
* Old generation have a tendency to drop quickly, and the

decrement of heap size results in more GCs



Memory Bloat Attack
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Attack minor GC to prevent the heap from

shrinking even memory demand drops
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Launch Attacks

* Proof-of-concept attacks

* Modify JVM source code to manipulate GC time in the adaptive sizing algorithm

* Realistic attacks
e Use eBPF to monitor 1ibjvm. so to obtain GC thread ID and slowdown a specific type of GC

e Use cgroup to limit the CPU usage of GC threads and hence dilate GC time

e Results

e Crash a Java-based micro-benchmark with OOM errors
* Cause ~65% more GC time in DaCapo

* Inflict up to ~400% memory bloat in SPECjvm2008
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OOM Attack

* Attack major GC measurement

* JAVA _OPTION=
e -XX:+UseAdaptiveSizePolicy
e -XX:+UseParallelGC

* -XX:+UseParallelOldGC
e _XX:ParallelGCThreads=10 A micro-benchmark with a sudden spike in
memory demand

ArrayDeque
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* -Xms =32m-Xmx = 2g
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* Both proof-of-concept and realistic
attacks crash the micro-benchmark



Discussion

* Essence of the problem
* Heap size should be determined by the characteristics of a Java program
* But heap efficiency is measured by GC time, an indirect measure
e External CPU contention can affect internal heap management

* Many programs designed for dedicated systems are vulnerable to
similar attacks in multi-tenant systems
e CPU multiplexing = wall-clock time or virtual time?
* VMs, containers, conventional processes
* Linux jiffies and userspace gettimeofday track wall-clock time
* Linux CFS uses steal clock to track virtual time for thread scheduling

See our [Suo-SoCC17] paper for another issue caused by time discontinuity 13



Is this a real problem?

. No * Yes
_ * |In theory, if not measuring
* No e.V|d.ence that many absolute latency, time
applications suffer from measurement that is only
inaccurate time measurement. relevant to a particular

program or to measure the
relative progress of program
threads, should use virtual

e Even so, the effect is random
and universally distributed
among applications.

time
* Our attack is sophisticated and e This could be the source of
needs to target a specific type erroneous program behavior,
of GC, not easy. unpredictability and
inefficiency

Should we devise a completely isolated virtual time
interface for individual programs/VMs/containers ? 14



Thank you!
Questions?

xiaofeng.wu@mavs.uta.edu
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A Realistic Attack

* All experiments were conducted on a 64-core machine using
OpendDK 1.8 and Linux 4.15.0.

* The JVM was configured with 10 GC threads.

 Benchmark
« Dacapo: h2
« SPECjvm2008: mpegaudio



Pause time-oriented Attack (excessive GC)

* A realistic attack using eBPF
 Benchmark: h2 from Dacapo
* The initial and maximum heap sizes: 16 MB and 900 MB

* The maximum pause time is set to 100 ms
Baseline | Attacked | Overhead

# minor GC 1223 2033 66.23%
# major GC 28 46 64.29%
# total GC 1251 2079 66.19%

GC CPU time(sec) 132.93 250.03 88.09%

The attack shrinks the heap, causing 88%
more GC time



Cont’'d - Pause time-oriented

* We choose h2 from Dacapo-9.12-MR1-bach as a case study
« execute a number of transactions
« set the maximum pause time as 100 ms

Baseline | Attacked | Overhead

# minor GC 1187 1971 66.05%
# major GC 30 49 63.33%
# total GC 1217 2020 65.98%

GC CPU time(sec) 146.59 240.03 63.74%

The overhead induced by the pause time-oriented attack to the micro-benchmark.




Cont’d - Throughput-oriented

(a) Changes of heap size without attack
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Size (MB)

Size (MB)

Throughput-oriented Attack (memory bloat)
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* A realistic attack using eBPF
* mpegaudio from SPECjvm?2008

* The initial and maximum heap
sizes: 32 MB and 2.5GB

The attack prevents the heap from shrinking
when memory demand drops, causing more
than 400% waste of memory
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