Go Serverless: Secure Cloud via Serverless Design Patterns

Sanghyun Hong®, Abhinav Srivastava®, William Shambrook*, Tudor Dumitras®

*University of Maryland College Park, MD USA
*Frame.io, NY USA

)i Frame.io
|§| MARYLAND

CYBERSECURITY CENTER

Go Serverless: Secure Cloud via Serverless Design Patterns

Shared Responsibility Model

App. App.
OS 0OS App. App.
VM VM Con. Con.
Tenants
Cloud Providers
Hardware OS
Hardware
[VMs] [Containers]

Go Serverless: Secure Cloud via Serverless Design Patterns

Shared Responsibility Model — cont’d

................................... > [Security services or app]ications]

App. App
1.
OS 0OS App. App 5
VM VM Con. || Con. [3
Tenants 'Y/ /' .t ; .
Cloud Providers

Hardware OS

Hardware 4.
[VMs] [Containers]

Go Serverless: Secure Cloud via Serverless Design Patterns

Monitor intrusions/misuses
Malware/vulnerability scanners

Real-time data collection pipelines
e Data transformation
» Data stream partition/aggregation

Automated incident response

Serverless Architecture

App. App.

0OS OS App. App.

VM VM Con. Con.
Tenants

Cloud Providers _

[VMs]

[Containers]

Go Serverless: Secure Cloud via Serverless Design Patterns

App.@ APP-(3I% 5 [Key intuitions]
1L
2.

Spare the management efforts

Reduce the size of attack vectors

Serverless Architecture — cont’d

App. App.

0OS OS App. App.

VM VM Con. Con. App.()'t App
Tenants L

Many architectures has been proposed.
But it is hard to find simple design patterns

Cloud Providers _

[VMs]

[Containers]

Go Serverless: Secure Cloud via Serverless Design Patterns 5

Contributions

Present 6 serverless design patterns
Describe the key benefits and security applications for each pattern

Propose a threat-intelligence platform that utilizes the 6 patterns

s W

Discuss the limits of Lambda functions and ways to overcome them

Go Serverless: Secure Cloud via Serverless Design Patterns

A Taxonomy of Serverless Design Patterns

* Six Design Patterns (DPs)

1. DP1: Periodic invocation pattern
DP2: Event-driven pattern
DP3: Data transformation patterns
DP4: Data streaming patterns
DP5: State machine patterns
DP6: Bundling multiple patterns

o Uk wWwnN

Go Serverless: Secure Cloud via Serverless Design Patterns

DP1: Periodic Invocation Pattern

Periodic invocations

(hourly, daily, etc.)

Scheduler Lambda functions

[Applications]
* Security service: monitor continuous compliance status (SOC2, CSA, etc.)

* Others: archive the data not accessed for an extended time to cold storage

Go Serverless: Secure Cloud via Serverless Design Patterns

DP2: Event-driven Pattern

Files uploaded to S3

Triggers

ex. Files Event source Lambda functions

[Applications]
* Security service: monitor malicious file-uploads to cloud storage

* Security service: monitor incoming network traffics at a load balancer

Go Serverless: Secure Cloud via Serverless Design Patterns

DP3: Data Transformation Pattern [for ETL pipelines]

[Source: incoming streams] [Transform: enriched or formatted]

Data stream >

EEele)

Lambda functions Databases

[Transforms]
* Security-related: append the Geo-IP information to incoming network requests

* Security-related: append the VM or container information where a request is processed

Go Serverless: Secure Cloud via Serverless Design Patterns 10

DP4: Data Streaming Pattern [for ETL pipelines]

[Data Partitioner]

()

Streaming data 1

/
{ Data source > - ~

Streaming data 2

. /

Data source 1

(

\ 4

Streaming data J

g

Data source 2

[Data Aggregator]
Lambda functions

[Applications]
 Paritioner: report a security incident to multiple channels (e.g., Slack or PageDuty)

* Aggregator: append the Geo-IP information to incoming network requests

Go Serverless: Secure Cloud via Serverless Design Patterns

DP5: State Machine Pattern

o .

s

Data source

. .
..

State machine
[Applications]

* Security-related: stabilize data processing [ETL] pipelines

Go Serverless: Secure Cloud via Serverless Design Patterns

Databases

12

DP6: Bundling Multiple Pattern

[Data Partitioner] (}
= Files uploaded to S3
=== T T Triggers @ @
-

Streaming data
. ex. Files Event source Lambda functions Lambda function Destinations

Events%édata

Streaming data }

[DP2: Send the events and file data] [DP4: Partition the data]

Go Serverless: Secure Cloud via Serverless Design Patterns 13

Threat Intelligence Platform

[DP6: Bundling DP2 and DP3, 4, 5 to build data processing pipeline] [DP1, 2: Monitoring attacks]
[DP2: Collect data when a new event comes] [DP3, 4: Data streaming/transforms] Periodic Monitoring . ’ :
— . _,@ . ()Y
- — — Data stream — .
== . : iDatabase [Analytigs] Administrators!
- : = -'--.-.---....': .. e uus’ E E _’ _ E
- — (" H) : H :
g — Data stream — State Machine J—
L .
[various logs] > —» | [ncident |:
... Response |
[DP5: State machine that extends DP3, 4] _EDatabase [BaCKUpE..s..]. ...
... (DP1 + Incident Respomses (IRe)]
Data Collection Component Notification & Incident Response Components

Go Serverless: Secure Cloud via Serverless Design Patterns 14

Outline

bk W

Introduction

Six Serverless Design Patterns
Threat Intelligence Platform
Last Mile Problems

Conclusion

Go Serverless: Secure Cloud via Serverless Design Patterns

15

Last Mile Problems

* Resource constraints

1.

Time-bound execution
* Problem: Lambda function have a max. execution time limit
* Solution: Increase the execution time limit or pass state between executions

Lack of computing power
* Problem: Lambda is insufficient for CPU intensive workloads
* Solution: Make computing resources configurable or support GPUs

Disk space
* Problem: Lambda has limited disk space under the “/tmp” directory
* Solution: Make disk space configurable or support mounting external disks

Go Serverless: Secure Cloud via Serverless Design Patterns

16

Last Mile Problem — cont’d

e Limited functionalities

1. Event tracing
* Problem: Lack of tools for monitoring event traces in complex serverless systems
* Solution: Cloud providers support such tools fully integrated with existing services

2. Security
* Problem: No security services fully integrated with lambda functions
* Solution: Services such as vulnerability scanning of lambda function code

Go Serverless: Secure Cloud via Serverless Design Patterns

17

Conclusion

1. Lambda can be used as a core component of security services/applications.
* Minimizes the management effort compared to VMs or containers
* Reduces the attack vectors from the tenant’s space

2. We identified the six serverless patterns that utilize lambdas
» Each pattern has key benefits and can be commonly used in various services/applications
* Combining multiple patterns allows building large-scale and complex security systems

3. Lambda has several limits to be used in various domains
* Require to solve resource constraints and to provide more functionalities
* Open up more research questions in the serverless field

Thank you!

Sanghyun Hong
shhong@cs.umd.edu

Go Serverless: Secure Cloud via Serverless Design Patterns

19

Q& A:Is Lambda Se

M: encrypt using AWS KMS

Tenants access: enforce access policies]

Cloud Providers

[Malware: deploy IDSes]

bannel: use SGX/ SEV]

Go Serverless: Secure Cloud via Serverless Design Patterns 20

Q & A: Cost & Scalability Analysis

e Task [that transforms incoming network requests]:
* Execution time: 100ms - 5min.
* Allowed latency: 100ms - 500ms.
 Size: 200 req. logs per minute, where each log has 5k entries [total 1million req.]

* Comparison:
e Use VMs: 2 EC2 instance [m5.large type] with 2CPUs and 8GB mem.
e Use lambdas: 256 MB mem.

* Cost [per month]: $37.74 [1] / $138.24 [VMs], (c.f.,, run A 1min - $2,162.16 / $138.24)

 Scalability: lambda is the best for the unpredictable loads,
as it only runs when it is invoked.

21

