Cloud-Native
File Systems

Remzi H. Arpaci-Dusseau
Andrea C. Arpaci-Dusseau
University of Wisconsin-Madison

Venkat Venkataramani
Rockset, Inc.

How And What We Build
s Always Changing

Earliest days
e Assembly programming on single machines

Big single-machine advances
* Unix: A standard (and good) OS!
* C: A systems language!

Same thing, one level up: Distributed systems

* Collect group of standard machines,
build something interesting on top of them

Commonality:
New System on Fixed Substrate

Whether a single machine/distributed, we tend to

build new systems on a fixed set of resources
with fixed (sunk) cost

 Machine: X CPUs, Y GB memory, Z TB storage
* Buy many such machines

e Build new system of interest on those machines

But the world is changing...

Welcome To Cloud

Cloud is a reality
« Can rent cycles or bytes as needed
» Per-unit cost is defined and known
* Not just raw resources: services too

Many new systems are being realized only in cloud

e Excellent example: Snowflake elastic warehouse
[sigmod '16]

Thus, Questions

Cloud-native thinking:
How should we build systems given the cloud?

« \What new opportunities are available”
 What new systems can we realize?
* What can we stop worrying about?

INn This Talk

Cloud-native principles

« Guidelines for how to think about building
systems in the era of the cloud

Cloud-native file system

o Case study: How to transform a local file
system into a cloud-native one

Principles

Storage principles
CPU principles
Overarching principle

(just highlights; more in paper)

Storage Reliability

Storage reliability principle:
Highly replicated, reliable, and available storage can
(should?) be used (The “S3” principle)

e 11 "9s” of durability!

Implication: Build on top of this, don'’t build YARSS
(Yet Another Replicated Storage System)

 Example (kind of): BigTable on GFS

Storage Cost and Capacity

Storage cost principle:
Storage space is generally inexpensive

* At cheapest, $4 / month / TB

Storage capacity principle:
A lot of storage space available

* “The total volume of data and number of objects you
can store are unlimited” (Amazon)

Implication: Use space as needed to improve system
 Example: Indices for added lookup performance

Storage Hierarchy

Storage hierarchy principle: Storage is available
iIn many forms, with noticeable ditterences in
performance and cost across each level

 Example: Amazon Glacier vs S3

Implication: Must manage data across levels
e Can improve performance, reduce costs

CPU Parallelism

CPU parallelism principle (or AxB =B x A):
It should cost roughly the same to execute on
A CPUs for B seconds as it does to execute on
B CPUs for A seconds

e (Granularity of accounting might limit you...

Implication: Do everything you can in parallel

CPU Capacity

CPU capacity principle:
Large numbers of CPUs are available

* As with storage, essentially “unlimited”

Implication: Use as many CPUs as you need
e Scale up to solve tasks quickly

CPU Scale-Up/Down

CPU scale-up/scale-down principle:
One should only use as many CPUs as needed for
a task, and not more

 While cheap, CPUs are not free either

Implication: Must monitor usage, turn off CPUS
when unused

CPU Remote Work

CPU remote-work principle:
When possible, use remote CPU resources

to do needed work
e Shared data store makes this easier

Implication: Can separate foreground/background

* Improve predictability of former,
use parallelism for latter

CPU Hierarchy

CPU hierarchy principle: CPU is available in
different forms, with differences in performance,
cost, and reliability across each level

 Normal vs. spot instance for example

Implication: CPU types must be managed
* Pick CPU right for given task

Overarching Principle

Overall performance/cost principle:
Every decision in cloud-native systems is ultimately
driven by a cost/performance trade-off

* Can’t make decisions without cost/perf knowledge

* Extremes are interesting:
nighest performance, or lowest cost

« But middle ground is important too:
“reasonable” cost/performance

Implication: Cost must be fundamental part of systems
(and even applications above)

Implications

Replicated storage: Don't reinvent the wheel
—xtra space is cheap: Use for performance?
Massive parallelism: Use for background tasks

Hierarchy: Continuous data migration to lower cost while
Keeping performance high?

Cost: Have to know how much is OK to spend

Overall: Proper utilization of the cloud requires rethinking
of how we build the systems above them

Case Study: CNFS

Case Study: CNFS

Case Study: Cloud-Native File System (CNFS)

Classic Cloud-Native

@ Cloud Block Service

(e.g., EBS)

CNFS Architecture

CNFS: Key Points

Copy-on-write (COW): Natural fit for cloud
e Enables background work on immutable storage

Storage work naturally offloaded from front end
 Enables predictable low-latency for foreground
« Adds massive parallelism for background

Can optimize for cost or performance or mix
 Need hints from above on what is important
 New APIls too

But, still needs help from cloud providers
 Example: Can’t access EBS volumes from many clients (now)

Conclusions

Cloud Native
 New way to build systems upon substrate provided by Cloud

Principles: New guidelines for design
* Higher-level services: Don't reinvent the wheel
* Flexible resources: Can use a lot or a little
» Different types of resources: Costly/Fast vs. Cheap/Slow
* Cost awareness: Nothing is free

Case study: CNFS
o Alocal COW file system built to run on EBS (not a disk)

» Early prototype: Modified ext4 can migrate files across cloud volumes
(but much still to be done)

Cloud-native thinking: How does it change your next system?

End

