
Cloud-Native
File Systems

Remzi H. Arpaci-Dusseau
Andrea C. Arpaci-Dusseau

University of Wisconsin-Madison

Venkat Venkataramani
Rockset, Inc.

How And What We Build 
Is Always Changing

Earliest days
• Assembly programming on single machines

Big single-machine advances
• Unix: A standard (and good) OS!
• C: A systems language!

Same thing, one level up: Distributed systems
• Collect group of standard machines,  

build something interesting on top of them

Commonality:
New System on Fixed Substrate

Whether a single machine/distributed, we tend to
build new systems on a fixed set of resources
with fixed (sunk) cost

• Machine: X CPUs, Y GB memory, Z TB storage
• Buy many such machines
• Build new system of interest on those machines

But the world is changing…

Welcome To Cloud

Cloud is a reality
• Can rent cycles or bytes as needed
• Per-unit cost is defined and known
• Not just raw resources: services too 

Many new systems are being realized only in cloud
• Excellent example: Snowflake elastic warehouse

[sigmod ’16]

Thus, Questions

Cloud-native thinking: 
How should we build systems given the cloud?

• What new opportunities are available?
• What new systems can we realize?
• What can we stop worrying about?

In This Talk

Cloud-native principles
• Guidelines for how to think about building 

systems in the era of the cloud

Cloud-native file system
• Case study: How to transform a local file

system into a cloud-native one

Principles

Storage principles

CPU principles

Overarching principle

(just highlights; more in paper)

Storage Reliability

Storage reliability principle:  
Highly replicated, reliable, and available storage can
(should?) be used (The “S3” principle)

• 11 “9s” of durability!

Implication: Build on top of this, don’t build YARSS  
(Yet Another Replicated Storage System)

• Example (kind of): BigTable on GFS

Storage Cost and Capacity
Storage cost principle:  
Storage space is generally inexpensive

• At cheapest, $4 / month / TB
Storage capacity principle:  
A lot of storage space available

• “The total volume of data and number of objects you
can store are unlimited” (Amazon)

Implication: Use space as needed to improve system
• Example: Indices for added lookup performance

Storage Hierarchy

Storage hierarchy principle: Storage is available
in many forms, with noticeable differences in
performance and cost across each level

• Example: Amazon Glacier vs S3

Implication: Must manage data across levels
• Can improve performance, reduce costs

CPU Parallelism

CPU parallelism principle (or A x B = B x A):  
It should cost roughly the same to execute on  
A CPUs for B seconds as it does to execute on  
B CPUs for A seconds

• Granularity of accounting might limit you…

Implication: Do everything you can in parallel

CPU Capacity

CPU capacity principle:  
Large numbers of CPUs are available

• As with storage, essentially “unlimited”

Implication: Use as many CPUs as you need
• Scale up to solve tasks quickly

CPU Scale-Up/Down

CPU scale-up/scale-down principle:  
One should only use as many CPUs as needed for
a task, and not more

• While cheap, CPUs are not free either

Implication: Must monitor usage, turn off CPUS
when unused

CPU Remote Work
CPU remote-work principle:  
When possible, use remote CPU resources  
to do needed work

• Shared data store makes this easier  

Implication: Can separate foreground/background
• Improve predictability of former,  

use parallelism for latter

CPU Hierarchy

CPU hierarchy principle: CPU is available in
different forms, with differences in performance,
cost, and reliability across each level

• Normal vs. spot instance for example

Implication: CPU types must be managed
• Pick CPU right for given task

Overarching Principle
Overall performance/cost principle:  
Every decision in cloud-native systems is ultimately
driven by a cost/performance trade-off

• Can’t make decisions without cost/perf knowledge
• Extremes are interesting:  

highest performance, or lowest cost
• But middle ground is important too:  

“reasonable” cost/performance

Implication: Cost must be fundamental part of systems  
(and even applications above)

Implications
Replicated storage: Don’t reinvent the wheel
Extra space is cheap: Use for performance?
Massive parallelism: Use for background tasks
Hierarchy: Continuous data migration to lower cost while
keeping performance high?
Cost: Have to know how much is OK to spend

Overall: Proper utilization of the cloud requires rethinking  
of how we build the systems above them

Case Study: CNFS

Case Study: CNFS
Case Study: Cloud-Native File System (CNFS)

File
System

Classic

CNFS

Cloud-Native

Cloud Block Service 
(e.g., EBS)

CNFS Architecture

CNFS

Amazon EBS
High-Performance

Amazon EBS
Low-Cost

Snap Snap Snap Snap Snap Snap

Worker Worker

CNFS
ManagerVM

Demote
Compress

Communicate

Read/  
Write

App

CNFS: Key Points
Copy-on-write (COW): Natural fit for cloud

• Enables background work on immutable storage

Storage work naturally offloaded from front end
• Enables predictable low-latency for foreground
• Adds massive parallelism for background

Can optimize for cost or performance or mix
• Need hints from above on what is important
• New APIs too

But, still needs help from cloud providers
• Example: Can’t access EBS volumes from many clients (now)

Conclusions
Cloud Native

• New way to build systems upon substrate provided by Cloud

Principles: New guidelines for design
• Higher-level services: Don’t reinvent the wheel
• Flexible resources: Can use a lot or a little
• Different types of resources: Costly/Fast vs. Cheap/Slow
• Cost awareness: Nothing is free

Case study: CNFS
• A local COW file system built to run on EBS (not a disk)
• Early prototype: Modified ext4 can migrate files across cloud volumes

(but much still to be done)

Cloud-native thinking: How does it change your next system?

End

