
Monarch: Gaining Command on 
Geo-Distributed Graph Analytics

Anand Iyer ⋆, Aurojit Panda ▪, Mosharaf Chowdhury▴, 
Aditya Akella ⬩, Scott Shenker ⋆, Ion Stoica ⋆

⋆ UC Berkeley   ▪NYU  ⬩ University of Wisconsin ▴University of Michigan

HotCloud, July 09, 2018



Graph Analytics Popular 



Graph Analytics Popular 

Assume graph is aggregated to a single DC



Social Networks



Cellular Network Analytics



Financial Network Analytics

Image courtesy: Neo4J





Generate data in a geo-distributed 
fashion



Can benefit from timely analysis

Generate data in a geo-distributed 
fashion



How do we perform efficient
geo-distributed graph analytics?



Apply query on samples of the input data

Geo-Distributed Analytics (GDA)

Slide courtesy: Clarinet authors



Apply query on samples of the input data

Geo-Distributed Analytics (GDA)

Clarinet [OSDI ‘16]

Slide courtesy: Clarinet authors



Can we use the same idea on graphs?
§ GDA focuses on simple task placement/queries

§ Graph analytics iterative in nature

§ Flexibility over data placement and join sites
§ Graph partitioning difficult

§ Estimating intermediate data
§ Difficult in graph algorithms

Geo-Distributed Analytics on Graphs
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Geo-Distributed Analytics on Graphs

Key: Optimizing iterative 
graph-parallel processing



Graph Parallel Processing



Graph Parallel Processing

Gather: Accumulate information from neighborhood



Graph Parallel Processing

Gather: Accumulate information from neighborhood

Apply: Apply the accumulated value



Graph Parallel Processing

Gather: Accumulate information from neighborhood

Apply: Apply the accumulated value

Scatter: Update adjacent edges & vertices with new 
value
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WAN Awareness



Graph Sparsification

§ Sparsification extensively studied in graph theory
§ Idea: approximate the graph using a sparse, much smaller graph
§ Drop edges/vertices

§ Sparsify without accuracy loss
§ Only worry about reducing cross-DC entities
§ Leverage graph-parallel model and 

algorithm properties
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Incremental GAS Model
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Incremental GAS Model
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Which graph algorithms can use the iGAS model?
How much state needs to be kept at the entities for accuracy?
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Geo-Distributed Graph Computation Model
DC 1

DC 3

DC 2

DC 4

Bootstrap

Global Sync

iGASApply GDA techniques on task 
placement and data movement



Evaluation of Potential
§ 16 node Apache Spark cluster across 4 regions
§ Modified GraphX to incorporate the proposed model
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Other Open Questions
§ Convergence properties due to our modified 

execution model
§ Better execution models at bootstrap stage

§ How would the global sync work?

§ Multi-tenancy
§ Would it provide opportunities to leverage existing GDA techniques?

§ Graph updates
§ What is an incremental model in this case?



Conclusion
§ Several emerging applications produce graph data 

in a geo-distributed fashion
§ Can benefit from geo-distributed graph analytics.

§ Our proposal Monarch:
§ Early attempt at bringing geo-distributed analytics to graph 

processing.
§ Initial results are encouraging.

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu
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