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Graph Analytics Popular
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Graph Analytics Popular
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Cellular Network Analytics




Financial Network Analytics

BANK
ACCOUNT SYNTHETIC
UNSECURED PERSON 1
CREDIT LOAN
CARD
SYNTHETIC
PERSON 2
D ACCOUNT .
ONE HOLDER 1
N
NUMBER SSN 1
PHONE
SSN 2 . . NUMBER
ACCOUNT ADDRESS ACCOUNT
HOLDER 2 HOLDER 3
CREDIT BANK BANK UNSECURED
CARD ACCOUNT ACCOUNT LOAN

Image courtesy: Neo4J






6- ©

Generate data in a geo-distributed
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How do we perform efficient
geo-distributed graph analytics?



Geo-Distributed Analytics (GDA)

SELECT * .. FROM .. WHERE .. ;
Geo-distributed Analytics framework
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Geo-Distributed Analytics (GDA)
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Geo-Distributed Analytics on Graphs
Can we use the same idea on graphs?

= GDA focuses on simple task placement/queries

» (Graph analytics iterative in nature

» Flexibility over data placement and join sites
= Graph partitioning difficult

» Estimating intermediate data
= Difficult in graph algorithms



Geo-Distributed Analytics on Graphs
Can we use the same idea on graphs?

= GDA focuses on simple task placement/queries

» (Graph analytics iterative in nature
» Flexibility over data placement and join sites
= Graph partitioning difficult
» Estimating intermediate data
Key: Optimizing iterative

craph-parallel processing



Graph Parallel Processing




Graph Parallel Processing

Gather: Accumulate information from neighborhood




Graph Parallel Processing

Gather: Accumulate information from neighborhood

Apply: Apply the accumulated value




Graph Parallel Processing

Gather: Accumulate information from neighborhood

Apply: Apply the accumulated value

Scatter: Update adjacent edges & vertices with new

value
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Our Proposal: Monarch
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Graph Sparsification

» Sparsification extensively studied in graph theory

= |dea: approximate the graph using a sparse, much smaller graph

= Drop edges/vertices
9

= Sparsify without accuracy loss

= Only worry about reducing cross-DC entities

= Leverage graph-parallel model and é 7
algorithm properties

- J
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Geo-Distributed Graph Computation Model

i pci| | DC 2
%’ n @

I A

DC 3 DC 4

!

Vs
- J

=




Geo-Distributed Graph Computation Model
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Geo-Distributed Graph Computation Model
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Geo-Distributed Graph Computation Model
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Geo-Distributed Graph Computation Model
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Geo-Distributed Graph Computation Model

i pci| | DC 2
% 3 Bootstrap
‘ w7 : Global Sync
t DC 3 x t DC 4]




Geo-Distributed Graph Computation Model
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Incremental GAS Model
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Incremental GAS Model

Which graph algorithms can use the iGAS model?
How much state needs to be kept at the entities for accuracy?




Geo-Distributed Graph Computation Model
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Geo-Distributed Graph Computation Model
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Evaluation of Potential

Execution Time (s)

» 16 node Apache Spark cluster across 4 regions

» Modified GraphX to incorporate the proposed model
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Other Open Questions

» Convergence properties due to our modified
execution model

» Better execution models at bootstrap stage
= How would the global sync work?

= Multi-tenancy

= Would it provide opportunities to leverage existing GDA technigues?

= Graph updates

» Whatis an incremental model in this case?



Conclusion

» Several emerging applications produce graph data
in a geo-distributed fashion
= Can benefit from geo-distributed graph analytics.

» Our proposal Monarch:

= Farly attempt at bringing geo-distributed analytics to graph
processing.

= [nitial results are encouraging.

http://www.cs.berkeley.edu/~api
api@cs.berkeley.edu
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