NodeFinder: Scalable Search over
Highly Dynamic Geo-distributed State

Zhe Huang
Azzam Alsudais ,&.4, Bharath Balasubramanian
\J
~~—"

Eric Keller Shankaranarayanan Puzhavakath Narayanan
Kaustubh Joshi

USENIX HotCloud’18

o
-
O
)
-
O
S
O

~

Nod

‘N EEEEEEE
HEEEEEEER

—

Find nodes with
4GB of free RAM

Find nodes with
4GB of free RAM

f_ Nodes

-E-IFIEEIE
8 [8I[8] 6 [§] B

Use Cases

Use Cases

Cloud Management

Use Cases

Cloud Management

= \/M placement and

migration

Use Cases

Cloud Management

= \/M placement and
migration

= Host monitoring

Use Cases

Cloud Management

= \/M placement and
migration
= Host monitoring

= Resource utilization

Use Cases

Cloud Management NFV Automation

= \/M placement and
migration
= Host monitoring

= Resource utilization

Use Cases

Cloud Management NFV Automation
migration

= Host monitoring

= Resource utilization

Use Cases

Cloud Management NFV Automation
migration > Multi-site VNF deployment

= Host monitoring

= Resource utilization

Use Cases

Cloud Management NFV Automation
migration > Multi-site VNF deployment
= Host monitoring > Different data sources

= Resource utilization

Use Cases

Cloud Management NFV Automation

= \/M placement and = VNF homing on edge clouds
migration > Multi-site VNF deployment

= Host monitoring > Different data sources

= Resource utilization » Simultaneous query

processing

Challenges

Challenges

e Highly dynamic state

Challenges

e Highly dynamic state

e Scale and geo-distribution

Challenges

e Highly dynamic state
e Scale and geo-distribution

e Complex queries spanning different data sources

Node Finding Approaches

Frequent Push

-
—
N

o
-
O
p
-
O
S
O

~

‘N EEEEEEE
HEEEEEEER

Frequent Push

-
—
N

o
-
O
p
-
O
S
O

‘N EEEEEEE
HEEEEEEER

~

)
Query Server —=

Frequent Push

~

G
‘N EEEEEEE
HEEEEEEER

Frequent Push

Response

Query Server

Frequent Push

Scalability vs. Freshness

>
Query Server —

v

Response

On-demand Pull

~

o
-
O
p
-
O
S
O

Nod

‘N EEEEEEE
HEEEEEEER

—

On-demand Pull

o
’Query

Query Server

~

Nod

‘N EEEEEEE
HEEEEEEER

—

On-demand Pull

o
’Query

Query Server

~

Nod

‘N EEEEEEE
HEEEEEEER

—

On-demand Pull

Response

Query Server

On-demand Pull

Limited Scalability

Query

Response

Query Server

Hierarchical (Aggregation)

Query Server

Hierarchical (Aggregation)

>
Query Server —=

Hierarchical (Aggregation)

>
Query Server —=

Hierarchical (Aggregation)

>
Query Server —=

Hierarchical (Aggregation)

Response Query

>
Query Server —=

Hierarchical (Hybrid)

(. e)
2§ 8
N

~

Hierarchical (Hybrid)

)
=
N

~
d
o

Hierarchical (Hybrid)

@
’Query

)
=
N

~
d
o

Hierarchical (Hybrid)

Query Server

Hierarchical (Hybrid)

Response Query

Query Server

-~

%

~

|
78
d B

f

_

J

Hierarchical (Hybrid)

Management &
Operational Complexity

Query

Response

Query Server

-~

%

~

|
78
d B

f

_

J

OpenStack Scalability Bottleneck

OpenStack Scalability Bottleneck

4)
H & B
GCRCRGD

Compute Nodes

OpenStack Scalability Bottleneck

 Nova nodes push to RabbitMQ

RabbitMQ

Vo

)
>,

(|
d @ B
H &

- Compute Nodes

~

J

OpenStack Scalability Bottleneck

[worker)

 Nova nodes push to RabbitMQ

RabbitMQ

e Worker (Conductor) dequeues

Vo

S0

>

a ' D
§ § B
§ § B

- Compute Nodes

J

OpenStack Scalability Bottleneck

[worker

 Nova nodes push to RabbitMQ

RabbitMQ
e Worker (Conductor) dequeues «
e
e Worker pushes to DB a4 E E E\
- Compute Nodes /

OpenStack Scalability Bottleneck

[worker

Nova nodes push to RabbitMQ]
P RabbitMQ

Worker (Conductor) dequeues

2
>,

Vo

Worker pushes to DB 4 E ™

- Compute Nodes

RabbitMQ node is a bottleneck

J

NodeFinder

Attribute-based
Grouping

V
~ DISK{1,10} RAM{4,8)

Gossip-based
Coordination

V
~ DISK{1,10} RAM{4,8)

P2p gossip

NodeFinder

| !

meta-data g‘) [[

" Find nodes with 1GB of
free RAM & 5GB free DISK

REST API
NodeFinder

|

meta-data ¢,

REST API

" Find nodes with 1GB of

free RAM & 5GB free DISK

NodeFinder

Dlrected Pulling O\

meta-data ¢,

|

meta-data ¢,

Response

REST API

" Find nodes with 1GB of
free RAM & 5GB free DISK

NodeFinder

Evaluation

NodeFinder’s Scalability (BW)

ps)
N
S

n NOdeFlnder +
= 1200{ Pull/Push g — s Y e

KB

—h
)
)
o

sooF w
600 0w e O

400 = w” N S S

200F AT

Bandwidth Consumption

400 600 800 1000 1200 1400 1600
Number of Nodes

NodeFinder’s Scalability (BW)

ps)
N
S

- NodeFinder —€— R R e R
= 1200{ Pull/Push g — s Y o

KB

—h
)
)
o

sooF v = .

90% reduction

400 = w” O R NN N

600f e O

200F AT

Bandwidth Consumption

400 600 800 1000 1200 1400 1600
Number of Nodes

NodeFinder’s Scalability (Query Time)

1000
response Iatency -

~ network latency
S 800r
()]
£
|_
Q 600'
(Vs
(-
o
(@)
O
e 4007 100 300 500
@ hodes nhodes nodes
O)
©
L 200}
<C

cache Database p2p groups
Source of Query Response

NodeFinder’s Scalability (Query Time)

1000

response Iatency -

network latency

0
o
o

(@)
o
o

ess than 1 second of query processing time

AN
o
o

Average Response Time (ms)
|

100 300 500
nhodes nhodes nodes

N
o
-

cache Database p2p groups
Source of Query Response

Future Work

Future Work

e Integration into existing cloud systems (e.g, OpenStack)

Future Work

e Integration into existing cloud systems (e.g, OpenStack)

e Perform thorough evaluation

Future Work

e Integration into existing cloud systems (e.g, OpenStack)
e Perform thorough evaluation

e Extensions: continuous monitoring

Conclusion

Conclusion

— NodeFinder
General scalable search service through attribute-based

grouping, gossip-based coordination, and directed pulling.

J

Conclusion

— NodeFinder ~

General scalable search service through attribute-based
grouping, gossip-based coordination, and directed pulling.

. _J

~ Open Questions .

- How to implement NodeFinder as a general service (“plug-n-
run”)?

Conclusion

— NodeFinder ~

General scalable search service through attribute-based
grouping, gossip-based coordination, and directed pulling.

. _J

~ Open Questions N

- How to implement NodeFinder as a general service (“plug-n-
run”)?

- How to decide the right group ranges (i.e., attribute cutoffs)?

Conclusion

— NodeFinder ~

General scalable search service through attribute-based
grouping, gossip-based coordination, and directed pulling.

. _J

~ Open Questions N

- How to implement NodeFinder as a general service (“plug-n-
run”)?

- How to decide the right group ranges (i.e., attribute cutoffs)?

- What level of dynamics can NodeFinder support? loT?
_ y

