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Cloud Management NFV Automation

= \/M placement and = VNF homing on edge clouds
migration > Multi-site VNF deployment

= Host monitoring > Different data sources

= Resource utilization » Simultaneous query

processing
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Challenges

e Highly dynamic state
e Scale and geo-distribution

e Complex queries spanning different data sources
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Future Work

e Integration into existing cloud systems (e.g, OpenStack)
e Perform thorough evaluation

e Extensions: continuous monitoring
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~ Open Questions N

- How to implement NodeFinder as a general service (“plug-n-
run”)?

- How to decide the right group ranges (i.e., attribute cutoffs)?

- What level of dynamics can NodeFinder support? loT?
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