
JavaScript for Extending Low-latency In-memory
Key-value Stores

Tian Zhang Ryan Stutsman

1

Today’s large scale key-value stores (e.g. Ramcloud, FaRM,etc.) are able to:

• Store TBs ~ PBs of data. • 2~5μs end to end access time.

Req

• Perform billions of operations per second.

Not yet.

Have today’s applications been able to properly leverage such systems?

Introduction

2

Semantic Gap
• Implementing high level semantics with KVS APIs requires many roundtrips.

3

key:1; value: lchild 2, rchild 3
key:2; value: lchild 4, rchild 5
key:3; value: no child
key:4; value: no child
key:5; value: no child

Get() 2~5μs
Key Value StorageApplication

Server
Get() 2~5μs
Get() 2~5μs
Get() 2~5μs
Get() 2~5μs

1

2 3

4 5

Semantic Gap
• Implementing high level semantics with KVS APIs requires many roundtrips.

4

key:1; value: lchild 2, rchild 3
key:2; value: lchild 4, rchild 5
key:3; value: no child
key:4; value: no child
key:5; value: no child

TreeTraversal()

Key Value StorageApplication
Server

1

2 3

4 5

Existing Solution - Customized KVS
• Facebook has implemented TAO, a social graph data model in Memcache.

• Entities (e.g. people) are modeled as objects, their connections as associations.

• TAO stores objects and association lists, and provide APIs to operate on them.

Memcache

Hash Table

Key Value

Default API

get()
set()

delete()
…

TAO

Hash Table

Key Value

TAO API

object_add()
object_get()
assoc_add()

…

5

• Other customized KVS:

- Md-hbase with multi-attribute access support.

- Comet with application-specific actions.

- G-store with consistent multi-key access support.

Disadvantage : ad-hoc solutions for specific applications, not general.

6

Existing Solution - Customized KVS

Our Solution - Runtime Extensibility
• A more general solution is to allow pushing custom logic to KVS at runtime.

• The KVS can be dynamically reconfigured to support new applications.

Key Value Storage

TreeTraversal()
{
 … …
}

GraphTraversal()
{
 … …
}

7

8

More to Consider - Cloud Service

Key Value Storage

App 1
App 2

…

App n

Cloud

Elasticity
Scalability

8

• Combining workloads improves utilization.

• Deploying the system on cloud to leverage the elasticity and scalability.

Challenge - Isolation with Low Overhead

• KVS is fast, server processes requests in 2 μs.

- Its performance extremely sensitive to any overhead, even cache misses.

• Security isolation incurs 3 sources of overhead:

 - The cost of safer languages.

 - Context switches between protection domains.

 - Interactions with DB across protection domain boundaries.

 SQL - Difficult to implement new operators or complex algorithms.

 - Leading to ad-hoc extensions such as SimSQL, SciDB etc.

Native/C++ - Flexible. Need process isolation, interactions happen over IPC.

JavaScript - Flexible. Embedding V8 engine in DB process.

Approaches

10

• Our expectation : JavaScript may be slower than C++:

- JIT compiler doesn’t optimize as aggressively as C++ compiler.

- Less static type information.

- Garbage collection.

C++ vs. JavaScript

11

• Experiment setup:

- Compare same query logics written in C++ and JavaScript.

- We also compare these queries written in C++ and compiled to asm.js.

- Queries process 1 GB of records with varied selectivity and compute intensity.

- We don’t consider GC in this experiment, assume procedures are often short.

C++ vs. JavaScript

12

• For our memory intensive query, JavaScript is 27% slower than C++.

• Performance of asm.js is just 2% slower than C++.

13

C++ vs. JavaScript

��� ���������� �
�	

100%

73%

98%

• For our compute intensive query, JavaScript is faster than C++.

• Glibc’s pow implementation may be the cause of slower performance of C++.

14

C++ vs. JavaScript

��� ���������� �
�	

100%

220%

95%

Isolation Costs, Process vs. V8

• Isolation of C++ code is done using process.

- DB APIs invoked over IPC.

• Isolation of JavaScript code is done with V8::Context.

- DB APIs invoked in the same process through wrappers.

15

Isolation Costs, Process vs. V8

DB process

Client processes

2,242 ns

Boundary crossing
11.4× faster

Client V8 contexts

196 ns

DB process

• Measured the time of process switch and V8 context switch.

• V8::Contexts switch is 11.4x faster than processes.

16

Isolation Costs, Process vs. V8

Client process

DB process
null()

func()

2,242 ns

JS script

DB null()

func()
31 ns

Data access
72× faster

• Measured the time of invoking a DB API.

• Invocation from JS is 72x faster than over IPC.

17

Evaluation Summary

• We compare SQL, C++ & JavaScript for their suitability of implementing our idea.

• SQL is ruled out for its limited generality.

• C++ is ruled out for high isolation overhead.

• JavaScript is promising with generality, performance and low isolation overhead.

18

Why Not Software Fault Isolation

• For SFI, interactions require copying data between client procedure and DB.

• For data intensive procedures, that means huge overhead.

Interactions in SFI

DB

Client proc()

func()memcpy

19

Design

• Leverage scatter-gather list & zero copy DMA

• Leverage kernel bypassing networking (DPDK)

• Eliminating garbage collection

• Expose low level database abstractions

NIC

Dispatcher core

Worker cores

V8::C
ontexts

V8::Context 1
var raws =
 getTable(’t’);
 …
});

Gather List

20

Conclusion & Research Questions

• Conclusion:

- We propose JavaScript for extending
low latency in-memory KV store.

- The challenge is to keep overhead
under a small fraction of 2 μs.

- Evaluation shows JavaScript as a
promising choice with low isolation
cost and good performance.

• Call for feedbacks:

- What interesting APIs can be built?

- Is there other potentially better
approaches that we overlooked?

21

