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Today’s large scale key-value stores (e.g. Ramcloud, FaRM,etc.) are able to:

• Store TBs ~ PBs of data. • 2~5μs end to end access time.

Req

• Perform billions of operations per second.

Not yet.

Have today’s applications been able to properly leverage such systems?

Introduction
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Semantic Gap
• Implementing high level semantics with KVS APIs requires many roundtrips.
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key:2; value: lchild 4, rchild 5 
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key:4; value: no child
key:5; value: no child
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Semantic Gap
• Implementing high level semantics with KVS APIs requires many roundtrips.
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key:1; value: lchild 2, rchild 3 
key:2; value: lchild 4, rchild 5 
key:3; value: no child
key:4; value: no child
key:5; value: no child

TreeTraversal()

Key Value StorageApplication 
Server
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Existing Solution - Customized KVS
• Facebook has implemented TAO, a social graph data model in Memcache. 

• Entities (e.g. people) are modeled as objects, their connections as associations. 

• TAO stores objects and association lists, and provide APIs to operate on them.

Memcache

Hash Table

Key    Value

Default API

get() 
set() 

delete() 
…

TAO

Hash Table

Key    Value

TAO API

object_add() 
object_get() 
assoc_add() 

…
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• Other customized KVS: 

- Md-hbase with multi-attribute access support. 

- Comet with application-specific actions. 

- G-store with consistent multi-key access support. 

Disadvantage :  ad-hoc solutions for specific applications, not general.

6
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Our Solution - Runtime Extensibility
• A more general solution is to allow pushing custom logic to KVS at runtime. 

• The KVS can be dynamically reconfigured to support new applications.

Key Value Storage

TreeTraversal()
{
    … …
}

GraphTraversal()
{
    … …
}
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More to Consider - Cloud Service

Key Value Storage

App 1
App 2

…

App n

Cloud

Elasticity 
Scalability
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• Combining workloads improves utilization. 

• Deploying the system on cloud to leverage the elasticity and scalability.



Challenge - Isolation with Low Overhead

• KVS is fast, server processes requests in 2 μs.  

- Its performance extremely sensitive to any overhead, even cache misses. 

• Security isolation incurs 3 sources of overhead: 

    - The cost of safer languages. 

    - Context switches between protection domains. 

    - Interactions with DB across protection domain boundaries.



           SQL  -   Difficult to implement new operators or complex algorithms. 

                     -   Leading to ad-hoc extensions such as SimSQL, SciDB etc. 

Native/C++  -   Flexible. Need process isolation, interactions happen over IPC. 

JavaScript  -   Flexible. Embedding V8 engine in DB process.

Approaches

10



• Our expectation : JavaScript may be slower than C++: 

- JIT compiler doesn’t optimize as aggressively as C++ compiler. 

- Less static type information. 

- Garbage collection.

C++ vs. JavaScript
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• Experiment setup: 

- Compare same query logics written in C++ and JavaScript. 

- We also compare these queries written in C++ and compiled to asm.js. 

- Queries process 1 GB of records with varied selectivity and compute intensity. 

- We don’t consider GC in this experiment, assume procedures are often short.

C++ vs. JavaScript
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• For our memory intensive query, JavaScript is 27% slower than C++. 

• Performance of asm.js is just 2% slower than C++.
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• For our compute intensive query, JavaScript is faster than C++. 

• Glibc’s pow implementation may be the cause of slower performance of C++.
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Isolation Costs, Process vs. V8

• Isolation of C++ code is done using process. 

- DB APIs invoked over IPC. 

• Isolation of JavaScript code is done with V8::Context. 

- DB APIs invoked in the same process through wrappers.
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Isolation Costs, Process vs. V8

DB process

Client processes

2,242 ns 

Boundary crossing 
11.4× faster

Client V8 contexts

196 ns 

DB process

• Measured the time of process switch and V8 context switch. 

• V8::Contexts switch is 11.4x faster than processes.
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Isolation Costs, Process vs. V8

Client process

DB process
null()

func()

2,242 ns 

JS script

DB null()

func()
31 ns 

Data access 
72× faster

• Measured the time of invoking a DB API. 

• Invocation from JS is 72x faster than over IPC.
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Evaluation Summary

• We compare SQL, C++ & JavaScript for their suitability of implementing our idea. 

• SQL is ruled out for its limited generality. 

• C++ is ruled out for high isolation overhead. 

• JavaScript is promising with generality, performance and low isolation overhead.
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Why Not Software Fault Isolation

• For SFI, interactions require copying data between client procedure and DB. 

• For data intensive procedures, that means huge overhead.

Interactions in SFI 

DB

Client proc()

func()memcpy
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Design

• Leverage scatter-gather list & zero copy DMA 

• Leverage kernel bypassing networking (DPDK) 

• Eliminating garbage collection 

• Expose low level database abstractions

NIC

Dispatcher core

Worker cores

V8::C
ontexts

V8::Context 1 
var raws =  
    getTable(’t’); 
    … 
});

Gather List
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Conclusion & Research Questions

• Conclusion:

- We propose JavaScript for extending 
low latency in-memory KV store.  

- The challenge is to keep overhead 
under a small fraction of 2 μs. 

- Evaluation shows JavaScript as a 
promising choice with low isolation 
cost and good performance.

• Call for feedbacks:

- What interesting APIs can be built? 

- Is there other potentially better 
approaches that we overlooked?
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