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Growing a Protocol

1



Motivation
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✦ Elastic - distributed data store vendor whose products focus on real 
time search and analysis

✦ Data replication protocol is based on Primary/Backup

✦ Interested in a tool to determine if protocol was behaving correctly in 
the presence of faults as it evolves



✦ Software engineering best practices:
✦ Regression testing
✦ Root cause analysis

✦ Does not work while reasoning about fault tolerance properties of 
distributed systems

✦ Associate specific inputs with system behaviors

Introduction
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An example
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Naive Solution(s)
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Formal Methods Testing

Need to explore 
all fault scenarios 
for EVERY 
version change

Need to back 
port protocol 
changes to 
specifications



✦ LDFI - Lineage Driven Fault Injection
✦ Uses techniques from databases, logic programming and fault 

injection techniques

✦ Reasons about how a good outcome occurred to determine why a 
bad outcome might occur

Lineage Driven Fault Injection
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Background
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✦ LDFI builds a system model beginning with the first execution being 
successful

✦ Fault scenarios explored are those which falsify good outcome
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Catching Bugs early …
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Dormant bugs
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● Specially handling certain cases to avoid expensive operations 

●  Re-sync mechanisms

The “simplicity” of an optimization is not a barometer in understanding 
if it *could* violate guarantees of the system

A tale of two optimizations
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Avoiding expensive operations
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Past & Future Work
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✦ Concurrency bugs

✦ Explore not just schedules, but reorderings as well.

✦ Input Generation

✦ Different fault scenarios based on input data selected. Impacts 
bugs found. 



✦ Debugging distributed systems is hard!

✦ Need tools which straddle verification and testing

✦ Demonstrated that LDFI can be deployed as a tool in this space to 
find interesting bugs

Summary
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palvaro@ucsc.edu



Questions ?

kamala.ramas@ucsc.edu
https://github.com/KamalaRamas/molly
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