
 Kamala Ramasubramanian1, Kathryn Dahlgren1,
Asha Karim1, Sanjana Maiya1, Sarah Borland1,

Boaz Leskes2, Peter Alvaro1

1Disorderly Labs 2Elastic
University of California, Santa Cruz

Growing a Protocol

1

Motivation

2

✦ Elastic - distributed data store vendor whose products focus on real
time search and analysis

✦ Data replication protocol is based on Primary/Backup

✦ Interested in a tool to determine if protocol was behaving correctly in
the presence of faults as it evolves

✦ Software engineering best practices:
✦ Regression testing
✦ Root cause analysis

✦ Does not work while reasoning about fault tolerance properties of
distributed systems

✦ Associate specific inputs with system behaviors

Introduction

3

An example

4

Naive Solution(s)

5

Formal Methods Testing

Need to explore
all fault scenarios
for EVERY
version change

Need to back
port protocol
changes to
specifications

✦ LDFI - Lineage Driven Fault Injection
✦ Uses techniques from databases, logic programming and fault

injection techniques

✦ Reasons about how a good outcome occurred to determine why a
bad outcome might occur

Lineage Driven Fault Injection

6

Background

7

✦ LDFI builds a system model beginning with the first execution being
successful

✦ Fault scenarios explored are those which falsify good outcome

8

Catching Bugs early …

W2
W1

1

n1 M n3n2 C

2 2

8
9

10

Rep_W1

Ack_int

33 W2

Rep_W1

44

CRASHED5

Rep_W2
Ack_int

Ack_int

Rep_W1

Replica n2 is promoted to primary

9

Dormant bugs

W 2

n1 M n3n2 C

3

4

Rep_W

 CRASHED

Ack_int

● Specially handling certain cases to avoid expensive operations

● Re-sync mechanisms

The “simplicity” of an optimization is not a barometer in understanding
if it *could* violate guarantees of the system

A tale of two optimizations

10

11

Avoiding expensive operations

W1 2

n1 M n3n2 C

3

4

Rep_W1

 CRASHED

Replica n2 is promoted to primary

7

9
8

10

12
11

W2Rep_W2

Ack_int

Ack

Past & Future Work

12

✦ Concurrency bugs

✦ Explore not just schedules, but reorderings as well.

✦ Input Generation

✦ Different fault scenarios based on input data selected. Impacts
bugs found.

✦ Debugging distributed systems is hard!

✦ Need tools which straddle verification and testing

✦ Demonstrated that LDFI can be deployed as a tool in this space to
find interesting bugs

Summary

13

14

palvaro@ucsc.edu

Questions ?

kamala.ramas@ucsc.edu
https://github.com/KamalaRamas/molly

15

mailto:kamala.ramas@ucsc.edu
mailto:kamala.ramas@ucsc.edu

