
The HCl Scheduler
Going all-in on Heterogeneity

Michael Kaufmann, Kornilios Kourtis
USENIX HotCloud’17

Karlsruhe Institute of Technology Institute of Telematics IBM Research - Zurich

1

Evolution of Clusters - Past

→ Mostly homogeneous hardware

2

Evolution of Clusters

“ Heterogeneity occurs because servers
are gradually provisioned and replaced
over the typical 15-year lifetime of a DC.
At any point in time, a DC may host 3-5
server generations with a few hardware
configurations per generation
C. Delimitrou and C. Kozyrakis. ”Paragon: QoS-aware
scheduling for heterogeneous datacenters.” ACM SIG-
PLAN 2013. ”

2

Evolution of Clusters - Today & Future

The Next Platform, 2016-05-19

TechCrunch, 2016-11-30

TechCrunch, 2017-02-21

TechGenix, 2017-06-09

2

What about Applications?

Homogeneous View Heterogeneous View

Spark stage graph of TPC-DS Query #44

→ Applications are heterogeneous as well
◾ Runtime and resource requirements vary
◾ I/O volumes vary

.

3

What about Applications?

Homogeneous View Heterogeneous View

Spark stage graph of TPC-DS Query #44

→ Applications are heterogeneous as well
◾ Runtime and resource requirements vary
◾ I/O volumes vary

.

3

Consequences

“ Ignoring heterogeneity can lead to significant inefficiencies,
as someworkloads are sensitive to hardware configurations.
C. Delimitrou and C. Kozyrakis. ”Paragon: QoS-aware scheduling for heterogeneous
datacenters.” ACM SIGPLAN 2013. ”

→ We leave a lot of potential untapped, not least due to
inefficient task scheduling.

4

The HCl Scheduler - Goals, Starting Point & Approach

→ Goals
1. Efficient utilization & sharing of (heterogeneous) resources.
2. Minimize application (vs. task) runtime.
3. Reduce costs for clients and operators.

→ Starting Point
We primarily aim for maximizing scheduling quality and secondarily
for maximizing scaling & throughput and minimizing latency.

→ Approach
Exploit detailed resource and application information in order to find
globally optimal application schedules.

5

The HCl Scheduler - Goals, Starting Point & Approach

→ Goals
1. Efficient utilization & sharing of (heterogeneous) resources.
2. Minimize application (vs. task) runtime.
3. Reduce costs for clients and operators.

→ Starting Point
We primarily aim for maximizing scheduling quality and secondarily
for maximizing scaling & throughput and minimizing latency.

→ Approach
Exploit detailed resource and application information in order to find
globally optimal application schedules.

5

The HCl Scheduler - Goals, Starting Point & Approach

→ Goals
1. Efficient utilization & sharing of (heterogeneous) resources.
2. Minimize application (vs. task) runtime.
3. Reduce costs for clients and operators.

→ Starting Point
We primarily aim for maximizing scheduling quality and secondarily
for maximizing scaling & throughput and minimizing latency.

→ Approach
Exploit detailed resource and application information in order to find
globally optimal application schedules.

5

Closer Look at the Problems

P1. Stragglers due to h/w selection

P2. Priority inversion

P3. Non-beneficial stealing of
preferred resources

P4. Dominating I/O costs

6

Closer Look at the Problems

P1. Stragglers due to h/w selection P2. Priority inversion

P3. Non-beneficial stealing of
preferred resources

P4. Dominating I/O costs

6

Closer Look at the Problems

P1. Stragglers due to h/w selection P2. Priority inversion

P3. Non-beneficial stealing of
preferred resources

P4. Dominating I/O costs

6

Closer Look at the Problems

P1. Stragglers due to h/w selection P2. Priority inversion

P3. Non-beneficial stealing of
preferred resources

P4. Dominating I/O costs
6

Closer Look at the Problems

P1. Stragglers due to h/w selection P2. Priority inversion

P3. Non-beneficial stealing of
preferred resources

P4. Dominating I/O costs
6

The HCl Scheduler - Related Work

Scheduler Year H/W App Task P1 P2 P3 P4
LHEFT 2010 () - - ()
Mesos 2011 () - - - - - -
Paragon 2013 - - - - -

Kubernetes 2014 () - () - - - -
Tetris 2014 - () () () - - -

TetriSched 2016 () (-) () () () - -
Graphene 2016 () () () () - ()
Carbyne 2016 () (-) - () -
HCl 2017

→ Heterogeneity of applications and resources is rarely a primary concern.

7

The HCl Scheduler - Related Work

Scheduler Year H/W App Task P1 P2 P3 P4
LHEFT 2010 () - - ()
Mesos 2011 () - - - - - -
Paragon 2013 - - - - -

Kubernetes 2014 () - () - - - -
Tetris 2014 - () () () - - -

TetriSched 2016 () (-) () () () - -
Graphene 2016 () () () () - ()
Carbyne 2016 () (-) - () -
HCl 2017

→ Heterogeneity of applications and resources is rarely a primary concern.

7

The HCl Scheduler - Overview

→ HCl combines 3 sources of information that are usually separated.

Detailed Cluster Model Annotated Application DAG Performance Database
Switch

1G/s1G/s

Intra-node I/O
GPUNetwork Interface
CPU

N0 N1

t0 t1

t2 t3

t4

60 MB 60 MB

360 MB 360 MB

Task N0cpu N1cpu N1gpu
t0 4.0s 5.0s 2.0s

t1 4.0s 5.0s 2.0s

t2 1.0s 1.5s -

t3 8.0s 10.0s 5.0s

t4 1.0s 1.5s -

→ Extracted from OS /
Resource Manager

→ Extracted from App
Framework (e.g. Spark)

→ Soft/hard constraints
8

The HCl Scheduler - 10,000 Foot View

1. Submission 2. Partitioning 3. Priorization

1.

2.

3.

4. Scheduling 5. Repartitioning

6. Repriorization

9

The HCl Scheduler - Heuristics

→ DAG scheduling is an NP-complete problem, hence heuristics are nec-
essary to reduce the cost of scheduling to desired levels.

1. Partitions 2. Node Classes 3. Task Classes 4. Sampling

5. Early

Termination*

(...) → (...)

× (...) → (...)

(...) → (...) ×

* = Not a heuristic

10

Evaluation - Preliminary TPC-DS Benchmark Results (Excerpt)

→ Single-application, model-based evaluation (extracted from Spark) on
an 8 node cluster (2 fast, 6 slow nodes, factor 1.5).

TPC-DS Query 41 TPC-DS Query 44

100

110

120

130

140

150

%
 o

f c
rit

ic
al

 p
at

h

100

120

140

160

%
 o

f c
rit

ic
al

 p
at

h

H/W-oblivious H/W-aware HCl max depth 1 HCl max depth 2 HCl max depth 3

→ HCl schedules are within 15% of the critical path on average.

→ HCl schedules are 48% shorter on average. 11

Evaluation - Preliminary TPC-DS Benchmark Results (Excerpt)

→ Single-application, model-based evaluation (extracted from Spark) on
an 8 node cluster (2 fast, 6 slow nodes, factor 1.5).

TPC-DS Query 41 TPC-DS Query 44

100

110

120

130

140

150

%
 o

f c
rit

ic
al

 p
at

h

100

120

140

160

%
 o

f c
rit

ic
al

 p
at

h

H/W-oblivious H/W-aware HCl max depth 1 HCl max depth 2 HCl max depth 3

→ HCl schedules are within 15% of the critical path on average.

→ HCl schedules are 48% shorter on average. 11

Evaluation - Preliminary TPC-DS Benchmark Results (Excerpt)

→ Single-application, model-based evaluation (extracted from Spark) on
an 8 node cluster (2 fast, 6 slow nodes, factor 1.5).

TPC-DS Query 41 TPC-DS Query 44

100

110

120

130

140

150

%
 o

f c
rit

ic
al

 p
at

h

100

120

140

160

%
 o

f c
rit

ic
al

 p
at

h

H/W-oblivious H/W-aware HCl max depth 1 HCl max depth 2 HCl max depth 3

→ HCl schedules are within 15% of the critical path on average.

→ HCl schedules are 48% shorter on average. 11

Conclusion

→ Current cluster schedulers leave potential untapped.
◾ We need to consider H/W and S/W heterogeneity in order to solve
scheduling problems.

→ The HCl Scheduler is our attempt at exploring the potential of a fully
heterogeneity-aware scheduler.
◾ Preliminary evaluation shows that we can significantly shorten
schedules.

◾ Few additionail faster resources can help to speed up applications
significantly.

→ Lots of work left to be done.
12

Outlook

Thank you! Questions?

13

Outlook

→ Ongoing & Future Work
◾ Improve performance (heuristics & implementation)
◾ Implement multiple resources support
◾ Integrate into distributed application framework (Apache Spark,
TensorFlow)

◾ Evaluate opportunities at edge between scheduling, I/O (Crail
Store integration) and H/W acceleration.

14

Backup

The HCl Scheduler - Example (Problem 3: Non-beneficial stealing of preferred resources)

ta0

ta1 ta2

ta3

= 2× = 2× = 1s on = 2s on

Sa1

0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s
ta0

ta1

ta2 ta3

Sa2 ta0
ta1

ta2 ta3

Sa3 ta0

ta1

ta2 ta3

tb0

tb1 tb2

tb3

= 2× = 1s on = 2s on

Sb1

0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s

ta0
ta1

ta2 ta3
tb0

tb1
tb2

tb3

Sb2 ta0

ta1

ta2 ta3
tb0

tb1

tb2 tb3

15

	Backup

