
Time-based Coordination in
Geo-Distributed Cyber-Physical Systems

Sandeep D’souza and Raj Rajkumar
Carnegie Mellon University

USENIX Workshop on Hot Topics in Cloud Computing ‘17

A Shared Notion of Time
● Coordinated Actions
● Ordering of Events

A Shared Notion of Time is useful
→ Replace Communication with Local Computation*

*Liskov, Distributed Computing ‘93

Geo-Distributed Cyber-Physical Systems
● Distributed computation, sensing and actuation

○ coordination at scale (local to planetary)
● Emerging CPS characterized by:

○ different applications, same infrastructure

○ heterogeneous computation and networking

A shared notion of time is useful to enable
coordinated action in geo-distributed CPS

Coordination in Space and Time

The cloud is key to achieve scale
→ Time-aware cloud for geo-distributed coordination

CPS and the Cloud
● The cloud is key to enable geographical scaling

○ data storage
○ host the intelligence behind CPS
○ enable coordination between smaller entities

● Low-latency requirements of CPS
○ Safety-critical + real-time performance
○ A hierarchy of cloudlet and cloud deployments

Existing Research: Reduce Network Latency* and Efficient Data Storage#

Required: Time-based coordination in CPS

#Zhang, HotCloud ‘15
*Satyanarayanan, PerComm ‘15

Coordinated Vehicles using TimeNet
● TimeNet: Cyber-Physical Internet

○ ideal timesource, no uncertainty
○ perfect timestamping

● Dynamic Traffic Management
○ city-scale vehicular coordination
○ time-based hierarchical system

■ timestamps→ event ordering
■ event ordering → policy

Inherent uncertainties with synchronized clocks

Outline
● Motivation
● Background

○ Quality of Time (QoT)
○ QoT Architecture

● The Case for Shared Time and QoT
● QoT-based Cloud CPS Architecture
● Conclusion

Quality of Time (QoT)*
● Quantified

○ using clock parameters:
■ accuracy, precision, drift….

○ w.r.t a reference clock (time)
● Each timestamp has bounds

○ Timestamp ϵ {t-᷑
l
, t+᷑

h
}

The end-to-end uncertainty in the notion of time
delivered to an application by the system

*Anwar et al., RTSS ‘16

QoT Architecture*
● Caters to application timing demands

○ Applications specify QoT requirements
● Provides guarantees on the received QoT

○ Tunable clock synchronization
● Exposes the obtained timing accuracy

○ QoT-estimation mechanisms
● Easy-to-use, secure and scalable

○ Robust implementation

Applications specify QoT requirements, the QoT Architecture orchestrates
the system and returns the delivered QoT → closing the time loop

*Anwar et al., RTSS ‘16

Outline
● Motivation
● Background
● The Case for Shared Time and QoT

○ Coordination in CPS
○ Shared Time and QoT

● QoT-based CPS-Cloud Architecture
● Conclusion

Coordination in CPS
● Scalability

○ Both numerical and geographical
● Fault Tolerance and Reliability

○ Both analytical and physical redundancy
● Ease of Programmability

○ coordination framework with APIs
● Security

Need for a QoT-based coordination framework for CPS

Uncertainty: Software Systems vs CPS
● Software Systems

○ lower timing uncertainty, better QoT, better performance
■ Spanner#: lower uncertainty, smaller commit wait

● Cyber-Physical Systems
○ if timing uncertainty exceeds specification (degraded QoT)
○ system cannot operate safely

Application should be notified if QoT degrades
→ graceful degradation to satisfy safety requirements

#Corbett et al., OSDI ‘12

QoT-based Connected Vehicles
● Tolerable QoT Requirements based on

○ timestamps→ event ordering
○ event ordering → policy

● If uncertainty exceeds tolerable limit
○ coordination policy can adapt
○ Graceful Degradation:

■ Increase vehicular spacing
○ Safe Halt:

■ Instruct vehicles to stop

Synchronized Clocks → Scalable Coordination Quality of Time → Fault Tolerance
→ Need for a QoT-based CPS-Cloud Framework

100 us 100 us 100 us 100 us

1 ms 1 ms

10 ms

Outline
● Motivation
● Background
● The Case for Shared Time and QoT
● QoT-based CPS-Cloud Architecture

○ Architectural Challenges
○ QoT Stack for Linux

● Conclusion

Architectural Challenges
● Fault-Tolerance Support

○ Robust QoT-estimation mechanisms
● Global Coordination Service

○ Distributed apps, heterogeneous infrastructure
● Scalable Synchronization Service

○ Tunable clock synchronization, heterogeneous communication
● Virtualization Support

○ Adding QoT awareness to virtualized units of computing
● QoT-Aware Cloud Scheduling

○ VM/container placement based on application QoT requirements

QoT-based platform-independent coordination API needed

Fault Tolerance
● Failure Scenario:

○ Clock Synchronization degrades
○ Reported QoT must degrade

● Application-specific failover mechanisms
○ Physical and Analytical Redundancy

QoT can enable fault-tolerant coordination in CPS

Enabling Coordination at Scale
● Timeline*: Virtual reference time base
● Coordinated actions, distributed components

○ all components bind to a timeline
○ each specifying its required QoT

● Required: Global-scale Timelines
○ Time-based coordination protocol

Timelines abstract away clock synchronization
→ Applications specify QoT requirements, framework orchestrates the system

*Anwar et al., RTSS ‘16

Timeline

100 us 100 us 100 us

10 ms

Virtualization and QoT
● Higher clock-read and interrupt latencies*

○ Can we get near-native performance?
● VM Migration*

○ Clock-related state in the VM or host?
● Delivering and exposing QoT to applications

○ Different VMs, different requirements

Virtualization support required for utilizing the cloud

*Broomhead et al., OSDI ‘10

QoT-Aware Cloud Scheduling
● Multiple virtualized units running applications

○ different QoT requirements
○ probabilistic QoT-based Service Level Agreements

● VM/container placement based on QoT requirements
○ dictate the host to which they are allocated

● Categorize Servers based on QoT rating
○ quality of on-board clocks
○ network-proximity to reference clock source

Make QoT-Aware Cloud Scheduling work with
existing multi-level cloud schedulers

QoT Stack for Linux

Support for ARM and x86 platforms
open source, modular implementation, no change to the Linux kernel

Conclusion and Future Work
● Geo-Distributed CPS: “Coordination at scale”
● Using a Shared notion of Time and QoT enables:

○ Scalable Coordination with Fault Tolerance
○ Efficient Management of Time-related Resources

● QoT-based CPS-Cloud Architecture
○ Scalable Coordination and Clock Synchronization
○ Quartz-V: Adding QoT awareness to VMs
○ QoT-aware Cloud Scheduling

Synchronized Clocks → Scalable Coordination Quality of Time → Fault Tolerance
→ QoT-based CPS-Cloud Coordination Framework

Thank You ! Questions ?

Discussion
● Adding QoT awareness to VMs

○ Paravitualization
○ Security

● QoT-aware Cloud Scheduling
○ Challenges?

● Utility of QoT in Software Systems
○ Tracing, Databases ….

● ….

