A Cloud-based Content Gathering Network Debopam Bhattacherjee, Muhammad Tirmazi, Ankit Singla

: Few 100 millisecs of increase in latency => significant reduction in no. of searches per user

bing

Content Delivery Networks

CDN Server

Content Delivery Networks

- Predominant model for Web page delivery today
- Globally distributed infrastructure
 - Push content closer to the users
- Key Players: Akamai, Limelight, and Cloudflare
- Problems
 - Poor last mile latency
 - Needs content-origin for dynamic content
 Infrastructure (Akamai: 233,000+ servers in 1600+ ISP
 - Infrastructure (Akamai: 2 networks/ IXPs)
 - Associated cost

SPDY: 2012

- Multiplexing and concurrency • Compression of Headers
- Server Push
- Stream dependencies

Low adoption rates under 1% across Web servers (2015)

WebP: 2010

Protocol Enhancements

 Supports both lossy and lossless compression • PNG/JPEG to WebP -> 30% reduction in file size • Animated GIF to lossy WebP -> 64% reduction in file size

• Web server

 \bigcirc

 \bigcirc

• Cloud DC node

0

 \bigcirc

0 0

 \bigcirc

0

RTT (milliseconds)

CDF

RTT difference (milliseconds)

Can we reduce Web page load times?

"If the hill will not come to Mahomet, Mahomet will go to the hill." - Francis Bacon.

Direct server \leftrightarrow Client

Many long RTTs (e.g. 275 ms)

Direct server \leftrightarrow Client

Many long RTTs (e.g. 275 ms)

Client

0

0 0

 \bigcirc

Server \leftrightarrow CGN node

 \bigcirc

C

 \bigcirc

Many short RTTs (e.g. 5 ms)

One long RTT

CGN node

Web server

Client

CGN Node

Web Server

- Headless browser at CGN Node: PhantomJS
- Operate only 2 CGN nodes for the experiments
- North California, USA and Frankfurt, Germany Evaluation Client browser: Google's Chrome browser
- Automating page loads: sitespeed.io
- Client location: Lahore, Pakistan

53% reduction in PLTs for the top 100 domains

PLT (seconds)

43% reduction in PLTs for 100 random domains

PLT (seconds)

CGN vs Google's Flywheel

Taken from: https://www.usenix.org/sites/default/files/conference/protected-files/nsdil5_slides_agababov.pdf

Compression

etch router	Fetch bots	
Optimization services		HTTP Origin
Google datacenter		

Optimizations are orthogonal

21% faster than Google's Flywheel

PLT (seconds)

Isn't this very expensive?

- Reserved m4.10xlarge instances
 - Priciest at Sao Paulo
 - Computation cost: \$1.828/hour
 - Network cost: \$0.01/GB
- Average request (2MB)
 - ~300 ms CPU time
 - ~2 MB network bandwidth in both directions
- Average usage: 5000 requests/month
 - Cost: \$0.934 per user per month
 - Lahore: ~10% of the cost of typical broadband plans

.828/hour GB

Ongoing & Future Work

- More measurements Azure, PlanetLab, etc.
- Speeding up the headless browser
- Visual completion metric instead of PLT
- Reducing cost further
- Incorporating compression, caching, etc. (like Flywheel)
- Security
 - HTTPS: Trust model
 - Hiding content from CGN nodes Sandboxing of user requests from each other
- Management plane

• Do we need 233,000+ servers for Web content delivery?

- page delivery
- implementation.

Summary

Web server consolidation in or near cloud data centers CGN exploits this consolidation for speeding up Web

43-53% faster Web page loads with our preliminary