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» Large-scale distributed systems are now ubiquitous

» Advent of the cloud have made them more accessible

» Failures are now the norm, and have to be dealt with




Replication and Consensus

» Large-scale distributed systems need to be fault tolerant
» Replication is a technique to achieve fault tolerance

» Replication brings in added complexity in synchronizing multiple data copies

» Consensus Protocols
» Allows set of Replicas to act as a coherent group
» Goal is to have multiple processes agree on a common value

» Quorums — Minimum number of votes to make a decision for a collection of
processes




Consensus Protocols

» Paxos and variants @‘A
» Classic Paxos, Multi Paxos, Fast Paxos

» Widely used in recent large-scale distributed systems

» GFS, Megastore, Spanner, Ceph etc
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» Raft
» Designed with the goal of understandability

» Separates Leader election and Log replication



Consensus Protocols — Read Optimization

» Many applications need Linearizable reads.
» Our industrial partners, Huawei, have these demands too

» Consensus protocols can help provide these guarantees

» Variants for read-optimized settings

» Master Leases — Multi-Paxos
» Quorum Leases — SOCC 2014

» Read-Optimization in Megastore — Read-any, write all



Raft

Leader Election
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Linearizable reads at the leader — wait a round of heartbeats

Log Replication
» Leader proposes a value to the cluster
» Followers accept the proposal and reply
» Leader waits to hear from a majority,
commits the value locally and notifies the

cluster

 Followers also commit the value




CockroacigingE
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An open-source, fault-tolerant, strongly consistent, scale-out SQL database

Inspired by Spanner

Storage
» Data sorted as single monolithic key-value map

» Divided into partitions / ranges replicated by Raft

Lease-Holder — Non-overlapping leases




Logical Overview of CockroachDB
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Journey of a Request

Lease Holder —6-
Gateway Node
Client request @




Write Request

3. Replication successful at a

Gateway Node U
majority

2. Creates write intent, and Lease Holder

replicates using Raft

<<
1. Forward the request

4. Mark transaction successful, clear
intents, and return success



Read Request

Gateway Node
Lease Holder
3. Complete
client request 1. Forward the request
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2. Return the response

If there is write intent, based
on priority:
e Abort
e Waif until intent is
cleared



Bottleneck to Read Performance

» Reads are executed at the Lease-holder S ol
> B0

S
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» Overloads Lease-holder -

» Can be reduced by partition / range splitting — but this has many challenges - percentage of distributed
transactions across ranges increases, find the right partitioning strategy is hard, hotspot partitions will still
cause read bottlenecks

» Followers are cold standbys during failure-free scenarios

Partition 1

» Can we use the follower nodes for Linearizable reads ?

And optimize for read-heavy workloads ?



Improving Read Scalability

» Raft uses Majority Quorums to commit writes

» We exploit this fact to read from a majority quorum

» Combine with Lease-holder reads



Quorum Reads

» Send read requests to a majority of nodes

» Every node replies with latest stable value with corresponding timestamp

» Choose the value with latest timestamp



Quorum Reads

3. Nodes reply with timestamp and value
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Strongly Consistent Quorum Reads

» What if there is an ongoing request committed at the Lease-holder ?

» Strongly Quorum Reads
» Use Write intents to detect ongoing writes
» In case of conflicting writes, every node replies with timestamp and no value

» At gateway node, if there’s no value corresponding to latest timestamp, retry with a backoff

» This approach can serve linearizable / strongly consistent reads




Strongly Consistent Quorum Reads

3. Nodes reply with timestamp and value. If
there is a write intent, value is send as null
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Strongly Consistent Quorum Reads

6. Nodes reply with timestamp and value. If
there is a write intent, value is send as null
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Combining Lease-holder Reads and Quorum Reads

» Lease-holder can always read from local store _ _Px(n-2)

e n+Px(n—2)

x 100

» Non lease-holders can read from: : .
» Lease-holder, or where P is probability of a non

» Majority lease-holder node being

included in a majority by other

» To uniformly distribute read requests over all nodes, assuming: Non lease-holder nodes
» a cluster of n fully replicated nodes

» every node gets equal no. of read requests 1 n=23
» a node always includes itself for majority P (Ln72_J3—1)

(s

n>3

A gateway node can use lease-holder for x% of
total reads, and quorums for others

Provides ability to trade-off read & write latencies




Evaluation

» The proposed approaches are integrated within CockroachDB. Available on GitHub.
https.//github.com/vaibhavarora/cockroach/tree/raft-read-scalability

» YCSB Workload. Dataset of 100K items with (key, value)

» CockroachDB cluster of 5 AWS EC2 machines (m3.2xlarge instance type). 1 machine for YCSB clients

» 4 different read strategies 3&‘825362|EC2
» Lease-holder reads
» Local reads — an upper bound on performance Uniform read distribution throughout the

cluster — 28% lease-holder reads for
both proposed quorum read approaches

» Quorum reads

» Strongly consistent Quorum reads




Throughput (ops per sec)
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Varying Read-Write Ratio

» Uniform workload
» Varying read requests (30% to 99%)
» 70 client threads 24000
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HoTSpPOTtS

Hotspot workload - 80% requests access varying data (1% to 10%)
(95% reads, 5% writes)
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At high contention, strongly consistent quorum reads have a
large number of retries because of frequent conflicts.



Varying lease-holder reads (0% to 50%)

Uniform workload (95% reads, 5% writes)

70 client threads

Avg Update Latency (us)
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 Quorum read approaches reduce load
on lease-holder, leading to improved
write latencies

« Lease-holder reads reduce read latency
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Future Considerations / Discussion

» Can we choose majority in a more intelligent way?
» Use resource utilization & network latencies

» How well can quorum reads perform in failure-prone scenarios?
» Look into using strongly consistent quorum reads as part of transactional mechanisms

» Further improving read latencies — maybe for a subset of keys



Conclusion

» Proposed Quorum read approaches for Raft-like consensus protocols
» Combine them with traditional lease-holder reads
» Provide a way to trade-off between read & write latencies

» For failure-free scenarios with read-heavy workloads:
» Improved throughput
» Highly Improved write latencies
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