Leader or Mqgjority: Why Have One
When You Can Have Bothe
mproving Read Scalability in Raft-

ke Consensus Protocols

Vaibhav Arora, Tanuj Mittal, Divyakant Agrawal, Amr El Abbadi Xun Xue, Zhiyanan, Zhujianfeng
Distributed Systems Lab (DSL) Huawei
University of California, Santa Barbara

vaibhavarorag@cs.ucsb.edu

» Large-scale distributed systems are now ubiquitous

» Advent of the cloud have made them more accessible

» Failures are now the norm, and have to be dealt with

Replication and Consensus

» Large-scale distributed systems need to be fault tolerant
» Replication is a technique to achieve fault tolerance

» Replication brings in added complexity in synchronizing multiple data copies

» Consensus Protocols
» Allows set of Replicas to act as a coherent group
» Goal is to have multiple processes agree on a common value

» Quorums — Minimum number of votes to make a decision for a collection of
processes

Consensus Protocols

» Paxos and variants @‘A
» Classic Paxos, Multi Paxos, Fast Paxos

» Widely used in recent large-scale distributed systems

» GFS, Megastore, Spanner, Ceph etc

W/

»
eie
o

» Raft
» Designed with the goal of understandability

» Separates Leader election and Log replication

Consensus Protocols — Read Optimization

» Many applications need Linearizable reads.
» Our industrial partners, Huawei, have these demands too

» Consensus protocols can help provide these guarantees

» Variants for read-optimized settings

» Master Leases — Multi-Paxos
» Quorum Leases — SOCC 2014

» Read-Optimization in Megastore — Read-any, write all

Raft

Leader Election

G XX =)
times out receives votes from
starts up times out, new election e S
starts election Py

Candidate

Follower

discovers current
leader or new term

discovers server
with higher term

Linearizable reads at the leader — wait a round of heartbeats

Log Replication
» Leader proposes a value to the cluster
» Followers accept the proposal and reply
» Leader waits to hear from a majority,
commits the value locally and notifies the

cluster

 Followers also commit the value

CockroacigingE

>

>

>

>

An open-source, fault-tolerant, strongly consistent, scale-out SQL database

Inspired by Spanner

Storage
» Data sorted as single monolithic key-value map

» Divided into partitions / ranges replicated by Raft

Lease-Holder — Non-overlapping leases

Logical Overview of CockroachDB

SQL
v
Distributed, Monolithic KV Store
v v v v
_Node 1 Node 2 Node 3 _Node 4
Razge —— — 1 Roz\ge ——— 13 Ro}r;\ge 1 Rogge

J . J . J / (G
(Rogge led— | \” Rogge el — — L 4f Ra:ge \«// J N Ragge)

J \\ ~. J . J / .

() (\‘) 4 N / ()
Range Range +~ - _ Range ~ Range
«—— — — > — > " —|—>
D | D C D

7y |

Journey of a Request

Lease Holder —6-
Gateway Node
Client request @

Write Request

3. Replication successful at a

Gateway Node U
majority

2. Creates write intent, and Lease Holder

replicates using Raft

<<
1. Forward the request

4. Mark transaction successful, clear
intents, and return success

Read Request

Gateway Node
Lease Holder
3. Complete
client request 1. Forward the request

=] >

2. Return the response

If there is write intent, based
on priority:
e Abort
e Waif until intent is
cleared

Bottleneck to Read Performance

» Reads are executed at the Lease-holder S ol
> B0

S
i
» Overloads Lease-holder -

» Can be reduced by partition / range splitting — but this has many challenges - percentage of distributed
transactions across ranges increases, find the right partitioning strategy is hard, hotspot partitions will still
cause read bottlenecks

» Followers are cold standbys during failure-free scenarios

Partition 1

» Can we use the follower nodes for Linearizable reads ?

And optimize for read-heavy workloads ?

Improving Read Scalability

» Raft uses Majority Quorums to commit writes

» We exploit this fact to read from a majority quorum

» Combine with Lease-holder reads

Quorum Reads

» Send read requests to a majority of nodes

» Every node replies with latest stable value with corresponding timestamp

» Choose the value with latest timestamp

Quorum Reads

3. Nodes reply with timestamp and value

T*s > Ts
3.V, T's K 2 V*, T*s
Gateway Node Lease Holder
1. Clientread
request 2. Select random majority, R
read values and Y
< timestamps
5. Return V*
K:V,Ts
5. V. Ts 3.V, Ts
4. Selects T*s and KV, Ts K : V*, T*s

corresponding value V*

Strongly Consistent Quorum Reads

» What if there is an ongoing request committed at the Lease-holder ?

» Strongly Quorum Reads
» Use Write intents to detect ongoing writes
» In case of conflicting writes, every node replies with timestamp and no value

» At gateway node, if there’s no value corresponding to latest timestamp, retry with a backoff

» This approach can serve linearizable / strongly consistent reads

Strongly Consistent Quorum Reads

3. Nodes reply with timestamp and value. If
there is a write intent, value is send as null

T*s > Ts Gateway Node | 3. null, T¥s—

K:V,Ts [Write intent, T*s]

Lease Holder
1. Client read request

2. Select random maijority, KIVE T
read values and timestamps
(considering write intents)

3.V, Ts V*, T*s
K:V,Ts

~

3.V, Ts

5 K:V,Ts K:V,Ts [Write intent, T*s]

4. Selects T*s, no corresponding
value found. FAILED attempt. Retry.

Strongly Consistent Quorum Reads

6. Nodes reply with timestamp and value. If
there is a write intent, value is send as null

K:V,Ts

*
s >Ts Gateway Node

Client read request

< [
8. Return V*(

A

K:V,Ts

onsidering write intents)

6.V, Ts

/. Selects T*s and

corresponding value V*

5. Select random maijority,
read values and timestamps

[Write infent, T*s]

Lease Holder

K:V* T*s

K:V* T*s

Write Intent might resolve before retry

19

Combining Lease-holder Reads and Quorum Reads

» Lease-holder can always read from local store _ _Px(n-2)

e n+Px(n—2)

x 100

» Non lease-holders can read from: : .
» Lease-holder, or where P is probability of a non

» Majority lease-holder node being

included in a majority by other

» To uniformly distribute read requests over all nodes, assuming: Non lease-holder nodes
» a cluster of n fully replicated nodes

» every node gets equal no. of read requests 1 n=23
» a node always includes itself for majority P (Ln72_J3—1)

(s

n>3

A gateway node can use lease-holder for x% of
total reads, and quorums for others

Provides ability to trade-off read & write latencies

Evaluation

» The proposed approaches are integrated within CockroachDB. Available on GitHub.
https.//github.com/vaibhavarora/cockroach/tree/raft-read-scalability

» YCSB Workload. Dataset of 100K items with (key, value)

» CockroachDB cluster of 5 AWS EC2 machines (m3.2xlarge instance type). 1 machine for YCSB clients

» 4 different read strategies 3&‘825362|EC2
» Lease-holder reads
» Local reads — an upper bound on performance Uniform read distribution throughout the

cluster — 28% lease-holder reads for
both proposed quorum read approaches

» Quorum reads

» Strongly consistent Quorum reads

Throughput (ops per sec)

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Strongly Consistent Quorum —e—

Lea'se Hoider _—
Local —¢—
Quorum

B 140000
i 120000 |
wn
i =S
- 100000
[o
S
B © 80000
—
I ~—+ £ 60000
] =4
Lease Holder —+— =)
Local —<— 7] Sy 40000
Quorum] o
. Strongly Consistent Quorum —&— 20000
(0] 10 20 30 40 50 60 70 80 o EB=E ®
Threads (0} 10 20 30

Improvements with Quorum reads :
~4x write latency
~60% throughput

40 50 60 70 80
Threads

Varying Read-Write Ratio

» Uniform workload
» Varying read requests (30% to 99%)
» 70 client threads 24000

Lease Holder —_—
22000 r Local ——
20000 | Quorum

18000 L Strongly Consistent Quorum —6—
16000 |
14000 }
12000 |
10000 }
8000 |
6000 |

Up to ~85% improvement in throughout 4000 ;

2000 L

using Quorum read approaches 30 40 50 60 70 80 0 100

Read Percentage

Higher the read %, higher is the benefit
of using the quorum read approaches

Throughput (ops per sec)

HoTSpPOTtS

Hotspot workload - 80% requests access varying data (1% to 10%)
(95% reads, 5% writes)

20000 T T U U U U U U 250

S Lease Holder —+— 3 200 C-‘\ Lease Holder —+—
QU :) Qs
3’-,. 14000 F Strongly Consistent Qquorum —&— § 150 |k \ Strongly Consistent Quorum —&—
Q. [&}
< 12000 [] S
: e
£ 10000 g}] § 100 |
S @
S 8000 | - &
= : e e a 9507

6000 | - TS

06— o
4000 ' ' : . L . : ' 0tk — — o 5 4 o 24 — 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Hotspot Data Fraction Hotspot Data Fraction

At high contention, strongly consistent quorum reads have a
large number of retries because of frequent conflicts.

Varying lease-holder reads (0% to 50%)

Uniform workload (95% reads, 5% writes)

70 client threads

Avg Update Latency (us)

55000
50000
45000
40000
35000
30000
25000
20000
15000
10000

Quorum Avg Update Latency —+—
Strongly Consistent Quorum Avg Update Latency —>¢—

Quorum Avg Read Latency
Strongly Consistent Quorum Avg Read Latency

e

0]

10 20 30 40
Lease Holder Read Percentage

50

5800
5600
5400
5200
5000
4800
4600
4400
4200

 Quorum read approaches reduce load
on lease-holder, leading to improved
write latencies

« Lease-holder reads reduce read latency

s

3

5

2

T

Z Read and write latencies curves Intersect
near the point of Uniform read distribution

Future Considerations / Discussion

» Can we choose majority in a more intelligent way?
» Use resource utilization & network latencies

» How well can quorum reads perform in failure-prone scenarios?
» Look into using strongly consistent quorum reads as part of transactional mechanisms

» Further improving read latencies — maybe for a subset of keys

Conclusion

» Proposed Quorum read approaches for Raft-like consensus protocols
» Combine them with traditional lease-holder reads
» Provide a way to trade-off between read & write latencies

» For failure-free scenarios with read-heavy workloads:
» Improved throughput
» Highly Improved write latencies

vaibhavarora@cs.ucsb.edu

