
Leader or Majority: Why Have One
When You Can Have Both?
Improving Read Scalability in Raft-
like Consensus Protocols

Vaibhav Arora, Tanuj Mittal, Divyakant Agrawal, Amr El Abbadi Xun Xue, Zhiyanan, Zhujianfeng

Distributed Systems Lab (DSL) Huawei

University of California, Santa Barbara

vaibhavarora@cs.ucsb.edu

1

Large-Scale Distributed Systems

u Large-scale distributed systems are now ubiquitous

u Advent of the cloud have made them more accessible

u Failures are now the norm, and have to be dealt with

2

Replication and Consensus

u Large-scale distributed systems need to be fault tolerant

u Replication is a technique to achieve fault tolerance

u Replication brings in added complexity in synchronizing multiple data copies

u Consensus Protocols
u Allows set of Replicas to act as a coherent group
u Goal is to have multiple processes agree on a common value
u Quorums – Minimum number of votes to make a decision for a collection of

processes

3

Consensus Protocols

u Paxos and variants
u Classic Paxos, Multi Paxos, Fast Paxos

u Widely used in recent large-scale distributed systems

u GFS, Megastore, Spanner, Ceph etc

u Raft
u Designed with the goal of understandability

u Separates Leader election and Log replication

4

Consensus Protocols – Read Optimization

u Many applications need Linearizable reads.
u Our industrial partners, Huawei, have these demands too

u Consensus protocols can help provide these guarantees

u Variants for read-optimized settings
u Master Leases – Multi-Paxos

u Quorum Leases – SOCC 2014

u Read-Optimization in Megastore – Read-any, write all

5

Raft

Leader Election Log Replication

• Leader proposes a value to the cluster

• Followers accept the proposal and reply

• Leader waits to hear from a majority,
commits the value locally and notifies the
cluster

• Followers also commit the value

6

Linearizable reads at the leader – wait a round of heartbeats

CockroachDB

u An open-source, fault-tolerant, strongly consistent, scale-out SQL database

u Inspired by Spanner

u Storage
u Data sorted as single monolithic key-value map
u Divided into partitions / ranges replicated by Raft

u Lease-Holder – Non-overlapping leases

7

Logical Overview of CockroachDB

SQL

Distributed, Monolithic KV Store

Node 1 Node 4Node 2 Node 3
Range

A
Range

C
Range

D

Range
A

Range
B

Range
D

Range
A

Range
B

Range
C

Range
B

Range
C

Range
D

8

1

2

3

45

Lease Holder

Gateway Node

Client request

Journey of a Request
9

1. Forward the request

1

2

3

45

Lease Holder

Gateway Node

Write Request

2. Creates write intent, and
replicates using Raft

3. Replication successful at a
majority

4. Mark transaction successful, clear
intents, and return success

10

2

2

2
2

3
3

1. Forward the request

1

2

3

45

Lease Holder
Gateway Node

Read Request

If there is write intent, based
on priority:
● Abort
● Wait until intent is

cleared

2. Return the response

3. Complete
client request

11

Bottleneck to Read Performance

u Reads are executed at the Lease-holder

u Overloads Lease-holder
u Can be reduced by partition / range splitting – but this has many challenges - percentage of distributed

transactions across ranges increases, find the right partitioning strategy is hard, hotspot partitions will still
cause read bottlenecks

u Followers are cold standbys during failure-free scenarios

u Can we use the follower nodes for Linearizable reads ?

12

Partition 1

1a

1bAnd optimize for read-heavy workloads ?

Improving Read Scalability

u Raft uses Majority Quorums to commit writes

u We exploit this fact to read from a majority quorum

u Combine with Lease-holder reads

1
2 3

45

13

Quorum Reads

u Send read requests to a majority of nodes

u Every node replies with latest stable value with corresponding timestamp

u Choose the value with latest timestamp

1
2 3

45

14

1

2*

3*

4*5

Lease HolderGateway Node

3. V*, T*s

K : V*, T*s

K : V*, T*s K : V, Ts

K : V, Ts

T*s > Ts

1. Client read
request

Quorum Reads

2. Select random majority,
read values and
timestamps

4. Selects T*s and
corresponding value V*

5. Return V*

K : V*, T*s

3. V, Ts

15

3. V, Ts

3. Nodes reply with timestamp and value

Strongly Consistent Quorum Reads

u What if there is an ongoing request committed at the Lease-holder ?

u Strongly Quorum Reads
u Use Write intents to detect ongoing writes

u In case of conflicting writes, every node replies with timestamp and no value

u At gateway node, if there’s no value corresponding to latest timestamp, retry with a backoff

u This approach can serve linearizable / strongly consistent reads

16

1

2

3*

45

Lease HolderGateway Node

K : V, Ts

K : V*, T*s

K : V, TsK : V, Ts

K : V, Ts

T*s > Ts
1. Client read request

Write intent, T*s

Write intent, T*s

Strongly Consistent Quorum Reads

2. Select random majority,
read values and timestamps
(considering write intents)

4. Selects T*s, no corresponding
value found. FAILED attempt. Retry.

17

3. null, T*s

3. V, Ts

3. V, Ts V*, T*s

3. Nodes reply with timestamp and value. If
there is a write intent, value is send as null

1

2

3*

45

Lease HolderGateway Node

K : V, Ts

K : V*, T*s

K : V, Ts

K : V, Ts

T*s > Ts
Client read request

Write intent, T*s

Strongly Consistent Quorum Reads

5. Select random majority,
read values and timestamps
(considering write intents)

7. Selects T*s and
corresponding value V*

8. Return V*

18

6. null, T*s

K : V*, T*s

6.V*, T*s

6. Nodes reply with timestamp and value. If
there is a write intent, value is send as null

6.V, Ts

Write Intent might resolve before retry

Combining Lease-holder Reads and Quorum Reads

u Lease-holder can always read from local store

u Non lease-holders can read from:
u Lease-holder, or
u Majority

u To uniformly distribute read requests over all nodes, assuming:
u a cluster of n fully replicated nodes
u every node gets equal no. of read requests
u a node always includes itself for majority

where P is probability of a non
lease-holder node being
included in a majority by other
non lease-holder nodes

A gateway node can use lease-holder for x% of
total reads, and quorums for others

19

Provides ability to trade-off read & write latencies

Evaluation

u The proposed approaches are integrated within CockroachDB. Available on GitHub.
https://github.com/vaibhavarora/cockroach/tree/raft-read-scalability

u YCSB Workload. Dataset of 100K items with (key, value)

u CockroachDB cluster of 5 AWS EC2 machines (m3.2xlarge instance type). 1 machine for YCSB clients

u 4 different read strategies
u Lease-holder reads
u Local reads – an upper bound on performance

u Quorum reads
u Strongly consistent Quorum reads

20

Uniform read distribution throughout the
cluster – 28% lease-holder reads for
both proposed quorum read approaches

Uniform workload (95% reads, 5% writes)

Scaling Clients

Improvements with Quorum reads :
~4x write latency
~60% throughput

21

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 10 20 30 40 50 60 70 80

Th
rou

gh
pu

t (o
ps

 pe
r s

ec
)

Threads

Lease Holder
Local

Quorum
Strongly Consistent Quorum

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70 80

Av
g U

pd
ate

 La
ten

cy
 (u

s)

Threads

Lease Holder
Local

Quorum
Strongly Consistent Quorum

Varying Read-Write Ratio

u Uniform workload
u Varying read requests (30% to 99%)
u 70 client threads

22

Higher the read %, higher is the benefit
of using the quorum read approaches

Up to ~85% improvement in throughout
using Quorum read approaches 2000

 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

 30 40 50 60 70 80 90 100
Th

ro
ug

hp
ut

 (o
ps

 p
er

 se
c)

Read Percentage

Lease Holder
Local

Quorum
Strongly Consistent Quorum

HotSpots

Hotspot workload - 80% requests access varying data (1% to 10%)
(95% reads, 5% writes)

23

At high contention, strongly consistent quorum reads have a
large number of retries because of frequent conflicts.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (o

ps
 p

er
 se

c)

Hotspot Data Fraction

Lease Holder
Local

Quorum
Strongly Consistent Quorum

Read-write latency tradeoff

Varying lease-holder reads (0% to 50%)
Uniform workload (95% reads, 5% writes)
70 client threads

24

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 0 10 20 30 40 50
 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

Av
g U

pd
ate

 La
ten

cy
 (u

s)

Av
g R

ea
d L

ate
nc

y (
us

)
Lease Holder Read Percentage

Quorum Avg Update Latency
Strongly Consistent Quorum Avg Update Latency

Quorum Avg Read Latency
Strongly Consistent Quorum Avg Read Latency

• Quorum read approaches reduce load
on lease-holder, leading to improved
write latencies

• Lease-holder reads reduce read latency

Read and write latencies curves Intersect
near the point of Uniform read distribution

Future Considerations / Discussion

u Can we choose majority in a more intelligent way?
u Use resource utilization & network latencies

u How well can quorum reads perform in failure-prone scenarios?

u Look into using strongly consistent quorum reads as part of transactional mechanisms

u Further improving read latencies – maybe for a subset of keys

25

Conclusion

u Proposed Quorum read approaches for Raft-like consensus protocols

u Combine them with traditional lease-holder reads

u Provide a way to trade-off between read & write latencies

u For failure-free scenarios with read-heavy workloads:
u Improved throughput
u Highly Improved write latencies

26

vaibhavarora@cs.ucsb.edu

