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Large-Scale Distributed Systems

u Large-scale distributed systems are now ubiquitous

u Advent of the cloud have made them more accessible

u Failures are now the norm, and have to be dealt with
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Replication and Consensus

u Large-scale distributed systems need to be fault tolerant

u Replication is a technique to achieve fault tolerance

u Replication brings in added complexity in synchronizing multiple data copies

u Consensus Protocols
u Allows set of Replicas to act as a coherent group
u Goal is to have multiple processes agree on a common value
u Quorums – Minimum number of votes to make a decision for a collection of 

processes
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Consensus Protocols

u Paxos and variants
u Classic Paxos, Multi Paxos, Fast Paxos

u Widely used in recent large-scale distributed systems 

u GFS, Megastore, Spanner, Ceph etc

u Raft 
u Designed with the goal of understandability

u Separates Leader election and Log replication
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Consensus Protocols – Read Optimization

u Many applications need Linearizable reads. 
u Our industrial partners, Huawei, have these demands too

u Consensus protocols can help provide these guarantees

u Variants for read-optimized settings
u Master Leases – Multi-Paxos

u Quorum Leases – SOCC 2014

u Read-Optimization in Megastore – Read-any, write all
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Raft

Leader Election Log Replication

• Leader proposes a value to the cluster

• Followers accept the proposal and reply

• Leader waits to hear from a majority, 
commits the value locally and notifies the 
cluster

• Followers also commit the value
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Linearizable reads at the leader – wait a round of heartbeats



CockroachDB

u An open-source, fault-tolerant, strongly consistent, scale-out SQL database

u Inspired by Spanner

u Storage
u Data sorted as single monolithic key-value map 
u Divided into partitions / ranges replicated by Raft

u Lease-Holder – Non-overlapping leases
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Logical Overview of CockroachDB

SQL
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1. Forward the request
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1. Forward the request
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If there is write intent, based 
on priority:
● Abort
● Wait until intent is 

cleared

2. Return the response

3. Complete 
client request
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Bottleneck to Read Performance

u Reads are executed at the Lease-holder

u Overloads Lease-holder
u Can be reduced by partition / range splitting – but this has many challenges - percentage of distributed 

transactions across ranges increases, find the right partitioning strategy is hard, hotspot partitions will still 
cause read bottlenecks

u Followers are cold standbys during failure-free scenarios

u Can we use the follower nodes for Linearizable reads ?
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1bAnd optimize for read-heavy workloads ?



Improving Read Scalability 

u Raft uses Majority Quorums to commit writes

u We exploit this fact to read from  a majority quorum

u Combine with Lease-holder reads

1
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Quorum Reads 

u Send read requests to a majority of nodes

u Every node replies with latest stable value with corresponding timestamp

u Choose the value with latest timestamp

1
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3. V, Ts

3. Nodes reply with timestamp and value 



Strongly Consistent Quorum Reads

u What if there is an ongoing request committed at the Lease-holder ?

u Strongly Quorum Reads
u Use Write intents to detect ongoing writes

u In case of conflicting writes, every node replies with timestamp and no value

u At gateway node, if there’s no value corresponding to latest timestamp, retry with a backoff

u This approach can serve linearizable / strongly consistent reads
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6. null, T*s 
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Combining Lease-holder Reads and Quorum Reads

u Lease-holder can always read from local store

u Non lease-holders can read from:
u Lease-holder, or
u Majority

u To uniformly distribute read requests over all nodes, assuming:
u a cluster of n fully replicated nodes
u every node gets equal no. of read requests
u a node always includes itself for majority

where P is probability of a non 
lease-holder node being 
included in a majority by other 
non lease-holder nodes

A gateway node can use lease-holder for x% of 
total reads, and quorums for others
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Provides ability to trade-off read & write latencies



Evaluation

u The proposed approaches are integrated within CockroachDB. Available on GitHub. 
https://github.com/vaibhavarora/cockroach/tree/raft-read-scalability

u YCSB Workload. Dataset of 100K items with (key, value)

u CockroachDB cluster of 5 AWS EC2 machines (m3.2xlarge instance type). 1 machine for YCSB clients

u 4 different read strategies
u Lease-holder reads
u Local reads – an upper bound on performance

u Quorum reads
u Strongly consistent Quorum reads
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Uniform read distribution throughout the 
cluster – 28% lease-holder reads for 
both proposed quorum read approaches



Uniform workload (95% reads, 5% writes)

Scaling Clients

Improvements with Quorum reads :
~4x write latency
~60% throughput
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Varying Read-Write Ratio

u Uniform workload
u Varying read requests (30% to 99%)
u 70 client threads
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Higher the read %, higher is the benefit 
of using the quorum read approaches

Up to ~85% improvement in throughout 
using Quorum read approaches  2000
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HotSpots

Hotspot workload - 80% requests access varying data (1% to 10%)
(95% reads, 5% writes)
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At high contention, strongly consistent quorum reads have a 
large number of retries because of frequent conflicts.
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Read-write latency tradeoff

Varying lease-holder reads (0% to 50%)
Uniform workload (95% reads, 5% writes)
70 client threads
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Future Considerations / Discussion

u Can we choose majority in a more intelligent way?
u Use resource utilization & network latencies

u How well can quorum reads perform in failure-prone scenarios?

u Look into using strongly consistent quorum reads as part of transactional mechanisms

u Further improving read latencies – maybe for a subset of keys
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Conclusion

u Proposed Quorum read approaches for Raft-like consensus protocols

u Combine them with traditional lease-holder reads

u Provide a way to trade-off between read & write latencies

u For failure-free scenarios with read-heavy workloads:
u Improved throughput
u Highly Improved write latencies
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