What s Changing

in Big Data’”

Matei Zaharia :
June21.2016 databrlcksw

Background

Big data systems became a popular
research topic nearly 10 years ago

« large-scale, commodity clusters

What has changed since then?

€databricks

ABSTRA
We have de
tem, a scala
data-intensi

It is widely |
for the gene
vice as well |
large data s
dreds of ter
over a thow

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
jeff@google.com, sanjay@google.com
Google, Inc.

Abstract
MapReduce is a programming model and an associ-
ated i ion for p ing and ing large

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across

data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are

hundreds or th ds of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new

cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s exccution across a set of machines, handling ma-
chine failures, and ing the required int hi
ication. This allows progr without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapRed i many ter-
abytes of data on of machi F
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google's clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph

that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to cach logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
Ielize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of largs 1! nputati bined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-

ion of the MapReduce i tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance

of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appear in OSDI 2004

of our impl for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

My Perspective

“AC”E‘AZ Open source processingengine
SpQ K and set of libraries

™

- . Cloud data processing service
‘ databrlcks based on Apache Spark

€databricks

['hree Key Changes

@ Users: engineers = analysts
@ Hardware: /O bottleneck = compute

@ Delivery: strong trend toward cloud

€databricks

Changing Users

[nitial Big Data Users

lying runtime system automatically parallelizes the computation across large-scale clusters ol
machines, handles machine failures, and schedules inter-machine communication to make effi-
cient use of the network and disks. Programmers find the system easy to use: more than ten

thousand distinct MapReduce programs have been implemented internally at Google over the
past F(\”r vears, nn(] an averagoe (\F one h!m(’r(‘(l thmmnnd \1ﬂﬁR(‘(‘H(‘(‘ i”hQ are (‘\'(‘('”t(‘d on

Software engineers:

« Use Java, C++, etc to create large projects
« Build applications out of low-level operators

€databricks

Interpreting the Data:
Parallel Analysis with Sawzall

Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinl:

Google, Inc.

Pig Latin: A Not-So-Foreign Language for Data Processing

Abstract

Very large data sets often have a flat but regular structure and span mult

hi E: les include

call records, network logs, and web doc

tories. These large data sets are not amenable to study using traditional database
only because they can be too laree to fit in a sinele relational database. On the oth

of the analyses done on them ¢
filtering, aggregation, extractio

‘We present a system for au
expressed using a new procedu
Both phases are distributed ove
collated and saved to a file. Tl
of the programming language,
inherent in having data and cor

1 Introduction

Many data sets are too large, too

Christopher Olston” Benjamin Fleed1
Yahoo! Research Yahoo! Research
== ===

Hive — A Petabyte Scale Data Warehouse Using
Hadoop

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu
and Raghotham Murthy

Facebook Data Infrastructure Team

Abstract— The size of data sets being collected and analyzed in
the mdnnry for bnnnss intelligence is gxowmg rapidly, mlkmg

relational datat One c
petabytes of data—distributed acr
comprise many records, organized

solutions
Hadoop [1] is a popular op:
which is being used in companies like Yallou. Facebook etc. to
store and process extremely large data sets on_commodity

might include a web page rep
system health records from thousa
business transaction logs, network
such as satellite imagery.

Quite often the analyses applied to
less sophisticated than a general §
satisfy a certain property, or extrac
histograms of the values of certain

—
€databricks

However, the map- ‘model is very
low level and requires developers to write custom programs
which are hard to maintain and reuse. In this paper, we present
Hive, an open-source data warehousing solution built on top of
Hadoop. Hive supports queries expressed in a SQL-like
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL
enables users to plug in custom map-reduce scripts into queries.
The language includes a type system with support for tables
ing primitive types, ions like arrays and maps, and
nested compositions of the same. The underlying 10 libraries can
be extended to query data in custom formats. Hive also includes
a system catalog - Metastore — that contains schemas and
statistics, which are useful in data exploration, query
imi and query In Facebook, the Hive
warchouse contains tens of thousands of tables and stores over
700TB of data and is being used extensively for both reporting
and ad-hoc analyses by more than 200 users per month.

L. INTRODUCTION

Scalable analysis on large data sets has been core to the
functions of a number of teams at Facebook - both
engineering and non-engineering. Apart from ad hoc analysis
and business intelligence applications used by analysts across
the company, a number of Facebook products are also based
on analytics. These products range from simple reporting
applications like Insights for the Facebook Ad Network, to
more advanced kind such as Facebook's Lexicon product [2].
As a result a flexible infrastructure that caters to the needs of
these diverse applications and users and that also scales up in
a cost effective manner with the ever increasing amounts of

Aata heina asnoratad an Facshanl ic eritical Hiva and

data. As a result we started exploring Hadoop as a technology
to address our scaling needs. The fact that Hadoop was
already an open source project that was hcmg used at petabyte
scale and provided ility using was
a very compelling proposition for us. The same jobs that had
taken more than a day to complete could now be completed
within a few hours using Hadoop.

However, using Hadoop was not easy for end users,
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for
simple tasks like getting raw counts or averages. Hadoop
lacked the expressiveness of popular query languages like
SQL and as a result users ended up spending hours (if not
days) to write programs for even simple analysis. It was very
clear to us that in order to really empower the company to
analyze this data more productively, we had to improve the
query capabilities of Hadoop. Bringing this data closer to
users is what inspired us to build Hive in January 2007. Our
vision was to bring the familiar concepts of tables, columns,
partitions and a subset of SQL to the unstructured world of
Hadoop, while still maintaining the extensibility and
flexibility that Hadoop enjoyed. Hive was open sourced in
August 2008 and since then has been used and explored by a
number of Hadoop users for their data processing needs.

Right from the start, Hive was very popular with all users
within Facebook. Today, we regularly run thousands of jobs
on the Hadoop/Hive cluster with hundreds of users for a wide
variety of applications starting from simple summarization
jobs to business intelligence, machine learning applications
and to also support Facebook product features.

In the following sections, we provide more details about
Hive i and ilities. Section II describes the
data model, the type systems and the HiveQL. Section III
details how data in Hive tables is stored in the underlying
distributed file system — HDF S(Hadoop file system). Section

TV Aacorihac tha cuctam

and variane

Utkarsh Srivastav:.-li
Yahoo! Research

of organizations, innovation revolves
and analysis of enormous data sets
logs, and click streams. Inter-
‘Amazon, Google, Microsoft, and Ya-
Analysis of this data constitutes
the product improvement cycle. For
who develop search engine ranking
h of their time analyzing search logs
trends.
data sets dictates that it be stored
parallel systems, such as shared-
database products, e.g., Teradata,
offer a solution by providing a simple
nd hiding the complexity of the phys-
oducts however, can be prohibitively
Besides, they wrench programmers
method of analyzing data, namely
ripts or code, toward writing declara-
hich they often find unnatural, and

e, programmers have been flock-
dural map-reduce (4] programming
gram essentially performs a group-
el over a cluster of machines. The
map function that dictates how the
and a reduce function that performs
is appealing to programmers about
re are only two high-level declarative
duce) to enable parallel processing,
i.e., the map and reduce functions,
gr ning language of choice, and
psmllchsm
map-reduce model has its own set of
put, two-stage data flow is extremely
ks having a different data flow, e.g.,
gant workarounds have to be devised.
to be written for even the most com-
projection and filtering. These factors
ifficult to reuse and maintain, and in
‘the analysis task are obscured. More-
re of the map and reduce functions
‘the system to perform optimizations.
new language called Pig Latin that
both worlds: high-level declarative
of SQL, and low-level, procedural pro-
luce.

Expanding the User Base

Scripting / query languages
inspired by SQL, awk, etc

Used by new roles:

- Data scientists (technical
domain experts, e.g. ML

 Analysts (business

Challenges tor Non-Engineers

APl tamiliarity

\

Performance predictability & debugging

Can’'t hide that it’s large-scale |
Worse with more

Access from small data tools familiar APIs!

E.g. Excel, Tableau

€databricks

Case Study: Apache Spark

Cluster computingenginethat generalizes MapReduce

Collection of APIs and libraries
« APIs in Scala, Java, Python and R

+
—
@
V)

DataFrames
Streaming

e Streaming, SQL, ML, graph, ...

1000+ deployments, max > 8000 nodes

€databricks

Languages Used for Spark

2014 Languages Used 2015 Languages Used
840/0 710/0

€databricks

Original Spark API

Functional APl aimed at Java / Scala developers

Resilient Distributed Datasets (RDDs): distributed collections
with functionaltransformations

lines = spark.textFile(*hdfs://...") // RDD[String]
points = lines.map(line => parsepPoint(line)) // RDD[Point]
points.filter(p => p.x > 100).count()

€databricks

Challenge with Functional API

Looks high-level, but hides many semantics of computation
 Functions are arbitrary blocks of Java bytecode

» Data stored is arbitrary Java objects

Users can mix APIs in suboptimal ways

€databricks

Which Operator Causes Most Tickets”

€databricks

Example Problem

pairs = data.map(word => (word, 1))

&= Materializes all groups

groups = pairs.groupByKey()
as Seq[Int] objects

groups.map((k, vs) => (k, vs.sum)) \
Then promptly

aggregates them

€databricks

Challenge: Data Representation

Java objects often many times larger than underlyingfields

class User(name: String, friends: Array[Int])
new User(“Bobby”, Array(1, 2))

Uuser Ox.. | Ox..

l \> int[] |3 12

String (0|5 | Ox..

(char[] |5 ‘Bo‘b‘by

€databricks

Structured APIs:
DataFrames + Spark SQL

€databricks

DataFrames and Spark SOQL

Efficientlibrary for structured data (data with a known schema)
« Two interfaces: SQL for analysts + apps, DataFrames for programmers

Optimized computation and storage, similar to RDBMS

SIGMOD 2015

Spark SQL: Relational Data Processing in Spark

Michael Armbrustt, Reynold S. Xint, Cheng Liant, Yin Huait, Davies Liu’, Joseph K. Bradley",
Xiangrui Meng', Tomer Kaftan*, Michael J. Franklin*, Ali Ghodsi', Matei Zaharia'

tDatabricks Inc. *MIT CSAIL fAMPLab, UC Berkeley

ABSTRACT While the popularity of relational systems shows that users often

‘ databr].C].'(S Spark SQL is a new module in Apache Spark that integrates rela- p-refer writing dec.:larative que.ries., the re.lational approach is insuffi-
tional processing with Spark’s functional programming APL Built cient for many big data applications. First, users want to perform
an anr eynerience with Qhark Qnark QROI lete Snark nraoram. ETL to and from various data sources that might be semi- or un-

€databricks

|

Data

source <
AP

Loglcaﬂ Optimizer

Plan J

>

—~

{Catalog]

Execution sSteps

| \U/l

{Physcaﬂ Code

Plan J Generato

0

TN

a
csearch. '(QQ QQ -
PostgreSQL VE ...

DatafFrame AP]

DataFrames hold rows with a known schema and offer relational
operationson them through a DSL

val ¢ = new HiveContext()
val users = c.sqgl(“select * from users”)

val massUsers = users(users(“state”) === “MA”)

massusers.count() Expression AST
massusers.groupBy(“name”) .avg(“age”)

massusers.map(row => row.getString(0).toUpper())

€databricks

Why DataFrames”

Based on data frame conceptin R and Python
 Sparkis the first to make this a declarative AP

Integrates with other data science libraries
« MLlib, GraphFrames, ...

2005 2007 2009 2011
@databricks Google trendsfor “data frame”

What Structured APIs Enable

1. Compactbinary representation
Columnar, compressed format for caching; rows for processing

2. Optimization across operators (join ordering, pushdown, etc)

3. Runtime code generation

€databricks

Space Usage

Memory Usage when Caching

DataFrame

RDD

0 15 30 45
Data Size (GB)

€databricks

60

DataFrame SQL
DataFrame R
DataFrame Python
DataFrame Scala
RDD Python

RDD Scala

€databricks

Performance

O I I R R
N
(@)
o

Aggregation benchmark (s)

10

23

Uptake

DataFrames were released in March 2015, but already see high use:
62% of users in 2015 survey use DataFrames

69% of users use Spark SQL

SQL & Python are the top languages on Databricks

€databricks

Other High-Level APIs
Machine Learning Pipelines = M..ﬂ%_>*

Modular APl based on scikit-learn DataFrame model

GraphFrames
Relational + graph operations

Structured Streaming

Declarative streaming API in Spark 2.0 Many high-level data science

APIls can be declarative

€databricks

Changing Hardware

‘rends

Hardware ~

Storage

Network

CPU

€databricks

Hardware Trends

2010
50+MB/s
Storage (HDD)
Network 1Gbps

CPU ~3GHZ

€databricks

Hardware Trends
2010 2016
50+MB/s 500+MB/s
Storage (HDD) SSD)
Network 1Gbps 10Gbps
CPU ~3GHzZ ~3GHZ

€databricks

Hardware Trends
2010 2016
50+MB/s 500+MB/s
Storage (HDD) SSD)
Network 1Gbps 10Gbps

CPU ~3GHzZ

€databricks

~3GHZ

10x

10x

Surmmary

In 2005-2010, /0O was the name of the game
 Network locality, compression, in-memory caching

Now, compute efficiency matters even for data-intensive apps
» Getting harder with more diverse hardware, e.g. GPUs, FPGAS

Future: network cards = DRAM bandwidth

€databricks

Spark Effort: Project Tungsten
Optimize Apache Spark’s CPU and memory usage, via:
(1) Runtime code generation

(2) Exploitingcache locality
(3) Off-heap memory management

€databricks

Tungsten's Binary Encoding
(123, “data”, “bricks”)

l Offset to data

s -?-mﬁlnh
]

Offset to data Field lengths

Null bitmap

€databricks

Runtime Code Generation

DataFrame Code / SQL df.where(df("year") > 2015)

Logica] Expressions GreaterThan(year#234, Literal(2015))

bool filter(Object baseObject) {
int offset = baseOffset + bitSetWidthInBytes + 3*8L;
LOW‘l@V@l BYteCOde int value = Platform.getInt(baseObject, offset);
return value34 > 2015;

} JVM intrinsic JIT-ed to

I pointer arithmetic
€databricks

Whole-stage code generation
 Fuse across multiple operators

Optimizedinput/ output
« Apache Parquet + built-in cache

Recent Additions

Spark 1.6

Spark 2.0

Parquet
in 1.6

Parquet
in 2.0

. 14M

rows/s
. M
rows/s

11M

rows/s
b
rows/s

Not Limited to Spark

Results from Nested Vector Language (NVL) project at MIT

- Currentsystems
E I I W Handtuned code

HyPer GraphMat TensorFlow
Database PageRank Word2Vec

€databricks

Challenges

How to get this high performancewhile keepingthe ease of use for
non-programmers?

Can optimizationscompose across libraries / systems?

€databricks

Cloud Delivery

The Public Cloud 1s Here

Many Fortune 100 companieshave multiple PB of data in S3

Amazon Web Services up to S10B revenue

Especially attractive for big data
« 51% ofrespondents in 2015 Spark survey run on public cloud

€databricks

Beneftits

For cloud users:
 Purchase an end-to-end experience, not just bits

* Rapidly experiment with new solutions (same data & infrastructure)

For software vendors:
« Better products: end-to-end service, high visibility
« Fastiteration and uniform adoption

€databricks

Challenges

Requires new way to build software that is not well understood by
researchers (or traditional software companies)

« Multi-tenant: with untrusted tenants
 Highly available, yet with continuous updates

- Highly monitored for billing and security

€databricks

Example Challenges

Deployingupdates while keeping the service up
 And rolling back it needed!

Knowingwhether the service isup ttle academic

research these
Unexpected use, especially by code calling APIs

Performanceisolation of tenants at all levels

€databricks

Example: Databricks

End-to-end data processing platform based around Apache Spark
Access control, collaboration, auditing, production workflows

200+ customers and thousands
of individual users

€databricks

INTEGRATED WORKSPACE BI TOOLS

DASHBOARDS NOTEBOOKS @ @ %
Reports github, viz, d¢+ableau b

collaboration PRODUCTION JOBS

OPEN SOURCE DATABRICKS MANAGED SERVICES
MANAGEMENT: Scalability, resilience, multi-tenancy

MANAGED
INFRASTRUCTURE -+

APACHE INTERFACES: Bl tools & RESTful APIs
Spark

DATA INTEGRATION: Universal access without centralization

>
=
o
>
O
LLJ
N
Ll
N
oz
al
o
L]
I_
=
L]

Access control, auditing, encryption

USER STORAGE P— CLouD DAL HADOOP /
Bl STORAGE WAREHOUSES ~ [WSwws=])1\) \KES

€databricks

l.essons

Cloud developmentmodelis superior
« Two week releases, immediate feedback, visibility

State managementis very hard at scale
* Per-tenant configuration, local data, VM images, etc

Careful testing strategy is crucial
* Feature flags, stress tests, 70/20/10 testing pyramid

Design to maximize dogfooding

€databricks

Research Perspective

Computersystems is largely a social field: about interactions between
users < machines, users < users, and machines < machines

Cloud greatly changes the way users develop and consume software

Not much research beyond using it to parallelize stuff

€databricks

Example Research Problems

Composingsecurity interfaces of differentcloud providers
« E.g. Databricks access controls + Amazon IAM

Deterministic updates and rollback for complex systems

“Elastic-first” systems for price and demand variability

€databricks

Conclusion

Big data systems made great strides since they first came out
+ They’re used well beyond tech companies
— Not fully keeping up with new users & hardware

The cloud offers fantastic opportunitiesfor research
+ People can try your new thing in production right away!

— Not much research fully embraces it

€databricks

Thanks!

Databricks is Hiring
Full-timers and interns
matei@databricks.com

€databricks

