
What’s Changing
in Big Data?

Matei Zaharia
June 21, 2016

Background
Big data systems became a popular
research topic nearly 10 years ago
• Large-scale, commodity clusters

What has changed since then? .

My Perspective

Open source processing engine
and set of libraries

Cloud data processing service
based on Apache Spark

Three Key Changes
Users: engineers ➡ analysts1

2

3

Hardware: I/O bottleneck ➡ compute

Delivery: strong trend toward cloud

Changing Users

Initial Big Data Users

Software engineers:
• Use Java, C++, etc to create large projects
• Build applications out of low-level operators

Expanding the User Base
Scripting / query languages
inspired by SQL, awk, etc

Used by new roles:
• Data scientists (technical

domain experts, e.g. ML)
• Analysts (business)

Challenges for Non-Engineers

API familiarity

Performance predictability & debugging

Access from small data tools

Can’t hide that it’s large-scale

E.g. Excel, Tableau

Worse with more
familiar APIs!

Case Study: Apache Spark
Cluster computing engine that generalizes MapReduce

Collection of APIs and libraries
• APIs in Scala, Java, Python and R
• Streaming, SQL, ML, graph, ...

1000+ deployments, max > 8000 nodes Spark

St
re

am
in

g

SQ
L

+
Da

ta
Fr

am
es

M
Ll

ib

Gr
ap

hX

Languages Used for Spark

84%

38% 38%

71%

31%

58%

18%

2014 Languages Used 2015 Languages Used

Original Spark API
Functional API aimed at Java / Scala developers

Resilient Distributed Datasets (RDDs): distributed collections
with functional transformations

lines = spark.textFile(“hdfs://...”) // RDD[String]

points = lines.map(line => parsePoint(line)) // RDD[Point]

points.filter(p => p.x > 100).count()

Challenge with Functional API
Looks high-level, but hides many semantics of computation

• Functions are arbitrary blocks of Java bytecode
• Data stored is arbitrary Java objects

Users can mix APIs in suboptimal ways

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

groupByKey

Which Operator Causes Most Tickets?

Example Problem
pairs = data.map(word => (word, 1))

groups = pairs.groupByKey()

groups.map((k, vs) => (k, vs.sum))

Materializes all groups
as Seq[Int] objects

Then promptly
aggregates them

Challenge: Data Representation
Java objects often many times larger than underlying fields

class User(name: String, friends: Array[Int])

new User(“Bobby”, Array(1, 2))

User 0x… 0x…

String

3

0

1 2

Bobby

5 0x…

int[]

char[] 5

Structured APIs:
DataFrames + Spark SQL

DataFrames and Spark SQL
Efficient library for structured data (data with a known schema)

• Two interfaces: SQL for analysts + apps, DataFrames for programmers

Optimized computation and storage, similar to RDBMS

SIGMOD 2015

Execution Steps

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL

Code

Generator

Data
Frames

DataFrame API
DataFrames hold rows with a known schema and offer relational
operations on them through a DSL

val c = new HiveContext()
val users = c.sql(“select * from users”)

val massUsers = users(users(“state”) === “MA”)

massUsers.count()

massUsers.groupBy(“name”).avg(“age”)

massUsers.map(row => row.getString(0).toUpper())

Expression AST

Why DataFrames?
Based on data frame concept in R and Python

• Spark is the first to make this a declarative API

Integrates with other data science libraries
• MLlib, GraphFrames, …

Google trends for “data frame”

What Structured APIs Enable
1. Compact binary representation

• Columnar, compressed format for caching; rows for processing

2. Optimization across operators (join ordering, pushdown, etc)

3. Runtime code generation

Space Usage

DataFrame

RDD

Performance

23

0 2 4 6 8 10

RDD Scala
RDD Python

DataFrame Scala
DataFrame Python

DataFrame R
DataFrame SQL

Aggregation benchmark (s)

Uptake
DataFrames were released in March 2015, but already see high use:

62% of users in 2015 survey use DataFrames

69% of users use Spark SQL

SQL & Python are the top languages on Databricks

Other High-Level APIs
Machine Learning Pipelines
Modular API based on scikit-learn

GraphFrames
Relational + graph operations

Structured Streaming
Declarative streaming API in Spark 2.0 Many high-level data science

APIs can be declarative

tokenizer TF LR

modelDataFrame

Changing Hardware

Hardware Trends

Storage

Network

CPU

Hardware Trends
2010

Storage 50+MB/s
(HDD)

Network 1Gbps

CPU ~3GHz

Hardware Trends
2010 2016

Storage 50+MB/s
(HDD)

500+MB/s
(SSD)

Network 1Gbps 10Gbps

CPU ~3GHz ~3GHz

Hardware Trends
2010 2016

Storage 50+MB/s
(HDD)

500+MB/s
(SSD) 10x

Network 1Gbps 10Gbps 10x

CPU ~3GHz ~3GHz L

Summary
In 2005-2010, I/O was the name of the game

• Network locality, compression, in-memory caching

Now, compute efficiency matters even for data-intensive apps
• Getting harder with more diverse hardware, e.g. GPUs, FPGAs

Future: network cards ≅ DRAM bandwidth

Spark Effort: Project Tungsten
Optimize Apache Spark’s CPU and memory usage, via:

(1) Runtime code generation
(2) Exploiting cache locality
(3) Off-heap memory management

6 “bricks”

Tungsten’s Binary Encoding

0x0 123 32L 48L 4 “data”

(123, “data”, “bricks”)

Null bitmap

Offset to data

Offset to data Field lengths

Runtime Code Generation
df.where(df("year") > 2015)

GreaterThan(year#234, Literal(2015))

bool filter(Object baseObject) {
int offset = baseOffset + bitSetWidthInBytes + 3*8L;
int value = Platform.getInt(baseObject, offset);
return value34 > 2015;

}

DataFrame Code / SQL

Logical Expressions

Low-level Bytecode

JVM intrinsic JIT-ed to
pointer arithmetic

Platform.getInt(baseObject, offset);

Whole-stage code generation
• Fuse across multiple operators

Spark 1.6 14M
rows/s

Spark 2.0 125M
rows/s

Parquet
in 1.6

11M
rows/s

Parquet
in 2.0

90M
rows/s

Optimized input / output
• Apache Parquet + built-in cache

Recent Additions

Not Limited to Spark
Results from Nested Vector Language (NVL) project at MIT

HyPer
Database

TensorFlow
Word2Vec

GraphMat
PageRank

Current systems

Hand tuned code

Challenges
How to get this high performance while keeping the ease of use for
non-programmers?

Can optimizations compose across libraries / systems?

Cloud Delivery

The Public Cloud is Here
Many Fortune 100 companies have multiple PB of data in S3

Amazon Web Services up to $10B revenue

Especially attractive for big data
• 51% of respondents in 2015 Spark survey run on public cloud

Benefits
For cloud users:

• Purchase an end-to-end experience, not just bits
• Rapidly experiment with new solutions (same data & infrastructure)

For software vendors:
• Better products: end-to-end service, high visibility
• Fast iteration and uniform adoption

Challenges
Requires new way to build software that is not well understood by
researchers (or traditional software companies)

• Multi-tenant: with untrusted tenants
• Highly available, yet with continuous updates
• Highly monitored for billing and security

Example Challenges
Deploying updates while keeping the service up

• And rolling back if needed!

Knowing whether the service is up

Unexpected use, especially by code calling APIs

Performance isolation of tenants at all levels

Little academic
research these

Example: Databricks
End-to-end data processing platform based around Apache Spark

Access control, collaboration, auditing, production workflows

200+ customers and thousands
of individual users

DATA
WAREHOUSES

HADOOP /
DATA LAKES

USER STORAGE CLOUD
STORAGE

MANAGED
INFRASTRUCTURE

45

INTEGRATED WORKSPACE

DASHBOARDS
Reports

NOTEBOOKS
github, viz,
collaboration

EN
TE

RP
RI

SE
 S

EC
U

RI
TY

Ac
ce

ss
 c

on
tr

ol
, a

ud
iti

ng
, e

nc
ry

pt
io

n

BI TOOLS

OPEN SOURCE

USER APPLICATIONS

MANAGEMENT: Scalability, resilience, multi-tenancy

INTERFACES: BI tools & RESTful APIs

DATA INTEGRATION: Universal access without centralization

DATABRICKS MANAGED SERVICES

PRODUCTION JOBS

+

Lessons
Cloud development model is superior

• Two week releases, immediate feedback, visibility

State management is very hard at scale
• Per-tenant configuration, local data, VM images, etc

Careful testing strategy is crucial
• Feature flags, stress tests, 70/20/10 testing pyramid

Design to maximize dogfooding

Research Perspective
Computer systems is largely a social field: about interactions between
users ⇔machines, users ⇔ users, and machines ⇔machines

Cloud greatly changes the way users develop and consume software

Not much research beyond using it to parallelize stuff

Example Research Problems
Composing security interfaces of different cloud providers

• E.g. Databricks access controls + Amazon IAM

Deterministic updates and rollback for complex systems

“Elastic-first” systems for price and demand variability

Conclusion
Big data systems made great strides since they first came out

+ They’re used well beyond tech companies
− Not fully keeping up with new users & hardware

The cloud offers fantastic opportunities for research
+ People can try your new thing in production right away!
− Not much research fully embraces it

Thanks!

Databricks is Hiring
Full-timers and interns
matei@databricks.com

