Unikernel Monitors

Extending Minimalism Outside of the Box

Dan Williams and Ricardo Koller, IBM Research

USENIX HotCloud 2016
June 20, 2016, Denver, CO

Minimalism is good

* Reduced attack surface
» Better understanding of the system
» Performance

= Management

Application
and

software
stack

2 ©2016 IBM Corporation 24 June 2016

Unikernels: minimal systems?

= Built from fine-grained modules
* Only include what app needs

= Runs directly on virtual hardware

3 ©2016 IBM Corporation 24 June 2016

The extent of minimalism?

» |s the interface minimal?

> Unikernel

QEMU

Linux / KVM

4 ©2016 IBM Corporation 24 June 2016

The extent of minimalism?

» |s the interface minimal?

= |s the monitor minimal?

> Unikernel

Linux / KVM

gt
II”II“

I”I
[l

5 ©2016 IBM Corporation 24 June 2016 llom]|

The extent of minimalism?

» |s the interface minimal?

= |s the monitor minimal?

= Can we use similar
dependency-tracking
techniques?

6 ©2016 IBM Corporation 24 June 2016

Linux / KVM

> Unikernel

I“I}“”
[\‘”E\[“

(]
[l

Unikernel monitors

= Executables contain both application
and specialized monitor

Unikernel
> +
Monitor

-’

Linux / KVM

Nl
sy
n
(|

7 ©2016 IBM Corporation 24 June 2016 | [||

Prototype monitor: ukvm

= Type-II hypervisor
— Sets up memory, VCPU

= HW-support for virtualization
— provides isolated processor context

= All exits routed to monitor

* Runs MirageOS unikernels on Solo5 unikernel base

= https://github.com/djwillia/solo5

8 ©2016 IBM Corporation 24 June 2016

Advantages of unikernel monitors

= Minimal interfaces

= Simplified monitor implementation
and interface (~ 5% code size)

* Fast boot time (~ 10 ms)

Unikernel
> +
Monitor

-’

Linux / KVM

9 ©2016 IBM Corporation 24 June 2016

Minimal interfaces

* Interfaces to today’s clouds are wide and general-purpose
— Full virtualization, paravirtualization, OS-level (containers)

= A general purpose interface cannot be minimal

10 ©2016 IBM Corporation 24 June 2016

Building a unikernel

= Default monitor provides
generic virtual HW abstraction

blk-back

11 ©2016 IBM Corporation 24 June 2016

VMM
abstraction

guest setup

net-back

) 4
Jojiuow

Building a unikernel

= Default monitor provides
generic virtual HW abstraction

app

= Application depends on
— base runtime

base

runtime

blk-back VMM. net-back
abstraction

guest setup

12 ©2016 IBM Corporation 24 June 2016

ENSENIN

Jojiuow

Building a unikernel

= Default monitor provides

generic virtual HW abstraction i 1

= Application depends on TCP
— base runtime : |
o TCP StaCk runa:rene net-front

blk-back VMM. net-back
abstraction

guest setup

13 ©2016 IBM Corporation 24 June 2016

ENSENIN

Jojiuow

Building a unikernel

= Default monitor provides -
generic virtual HW abstraction l

= Application depends on
— base runtime

base

_ TCP Stack untime net-front

—Nodisk e e e e

blk-back VMM. net-back
abstraction

= Monitor and interface are -
guest setup
not minimal!

— VENOM attack

14 ©2016 IBM Corporation 24 June 2016

ENSENIN

Jojiuow

Building a unikernel and monitor

= Default monitor only provides
Isolated guest context

— Destroys unikernel on any exit

15 ©2016 IBM Corporation 24 June 2016

) 4
Jojiuow

Building a unikernel and monitor

= Default monitor only provides
Isolated guest context

— Destroys unikernel on any exit

= Application depends on
— base runtime

16 ©2016 IBM Corporation 24 June 2016

app

base
runtime

ENSENIN

Jojiuow

Building a unikernel and monitor

= Default monitor only provides
Isolated guest context

— Destroys unikernel on any exit

= Application depends on
— base runtime
— TCP stack

17 ©2016 IBM Corporation 24 June 2016

app

base
runtime

|

J

ENSENIN

Jojiuow

Building a unikernel and monitor

= Default monitor only provides
Isolated guest context

— Destroys unikernel on any exit

= Application depends on
— base runtime
— TCP stack
— No disk

= Monitor and interface is minimal!
— “Off by default”

18 ©2016 IBM Corporation 24 June 2016

app

base
runtime

ENSENIN

Jojiuow

Simplicity

» Legacy standards are unnecessary
for the cloud

— BIOS? PCI?

» Example: shared memory to send
network packet

= \What level of abstraction?
— Generality tax

» Specialized interfaces
— E.g., avoid VM introspection

19 ©2016 IBM Corporation 24 June 2016

struct ukvm netwrite {

void *data;

int 1len;
int ret;
QEMU | ukvm
malloc 6282 6282
runtime | 2689 2272
Solo5 Kernel | (irtio | 727
loader 886
total 10484 8552
QEMU 25003 -
Monitor ukvm 990 (+ 172 tap)
total 25003 1162

Boot time

= New application domains require on-the-fly service creation
—loT, NFV, Amazon Lambda
— Zero-footprint cloud, transient microservices

» | egacy protocols/emulation, virtual hardware negotiation,
and range of guest support can slow things down

20 ©2016 IBM Corporation 24 June 2016

Boot times

hello

= 3 applications

_ Hello world o H

— Block device test

V4
— Static Web server 2
oI s
= QEMU: standard :
monitor 2 _ _
o 5]]
0 50 100 "/ 700 1200
Time in ms
. monitor boot s | firstserial output
unikernel execution n| first network output

. monitor shutdown

21 ©2016 IBM Corporation 24 June 2016

Boot times

= 3 applications

— Hello world - I
— Block device test
— Static Web server _
S
= QEMU: standard :
monitor = = =
* lkvm: lightweight 0 50 100~ 700 ' 1200
monitor Time in ms
. monitor boot s | firstserial output
unikernel execution n| first network output

. monitor shutdown

22 ©2016 IBM Corporation 24 June 2016

Boot times

C L o
= 3 applications E
— Hello world =
— Block device test
— Static Web server 2 _
S
= QEMU: standard :
monitor = — —
S n
* lkvm: lightweight 0 50 100 700 ' 1200
monitor Time in ms
= ukvm: specialized Bl monitor boot s | firstserial output
monitor unikernel execution n| first network output

. monitor shutdown

23 ©2016 IBM Corporation 24 June 2016

Securing the monitors

= Monitor is outside hardware protection domain

= Small enough for formal verification, audit?

» Cloud providers restrict monitors to certified modules?

24 ©2016 IBM Corporation 24 June 2016

Summary

= Extend minimalism through both
unikernel and specialized monitor

— Better security
— Better performance
— Better management

= Prototype: ukvm
— https://github.com/djwillia/solo5

— Currently being upstreamed as
MirageOS backend

— Thank you to MirageOS community,
(especially Martin Lucina, Docker)

25 ©2016 IBM Corporation 24 June 2016

Linux / KVM

Unikernel
> +
Monitor

-’

=
9
=
©
—
o
(oL
—
Q
@)
=
m
o)
-~
o
IN
©

