
†

Serverless Computation
with OpenLambda 

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran  
Venkataramani†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau 

Unaffiliated



Web development in the cloud

CDN: static content 
(e.g., JavaScript)

Compute: dynamic logic 
(e.g., Python)

Storage: 
application data

RPCs Queries



Web development in the cloud

CDN: static content 
(e.g., JavaScript)

Compute: dynamic logic 
(e.g., Python)

Storage: 
application data

RPCs Queries

(VMs)



Web development in the cloud

CDN: static content 
(e.g., JavaScript)

Compute: dynamic logic 
(e.g., Python)

Storage: 
application data

compute is evolving

RPCs Queries

(VMs)



Web development in the cloud

CDN: static content 
(e.g., JavaScript)

Compute: dynamic logic 
(e.g., Python)

Storage: 
application data

compute is evolving

RPCs Queries

(Containers)



Web development in the cloud

CDN: static content 
(e.g., JavaScript)

Compute: dynamic logic 
(e.g., Python)

Storage: 
application data

RPCs Queries

compute is evolving

(Lambdas)



Web development in the cloud

CDN: static content 
(e.g., JavaScript)

Compute: dynamic logic 
(e.g., Python)

Storage: 
application data

prior to the Lambda model, cloud compute 
was neither elastic nor pay-as-you-go

RPCs Queries

(Lambdas)
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How to virtualize compute?
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1st generation: virtual machines
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virtual H/W
OS

Server

Application

advantages: 
• very flexible 
• use any OS 

problems: 
• interposition 
• is RAM used? (ballooning) 
• redundancy (e.g., FS journal)



2nd generation: containers
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advantages: 
• centralized view 
• init H/W once 



Are containers good enough?



Container case studies

Literature: Google Borg 
• Internal container platform [1] 
• 25 second median startup 
• 80% of time spent on package installation 
• matters for flash crowds, load balance, interactive development, etc

[1] Large-scale cluster management at Google with Borg. 
      http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf


Container case studies

Literature: Google Borg 
• Internal container platform [1] 
• 25 second median startup 
• 80% of time spent on package installation 
• matters for flash crowds, load balance, interactive development, etc 

Experimental: Amazon Elastic Beanstalk 
• Autoscaling cloud service 
• Build applications as containerized servers, service RPCs 
• Rules dictate when to start/stop (various factors)

[1] Large-scale cluster management at Google with Borg. 
      http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf


Interesting “autoscaling” rule



Experiment

Simulate a small short burst 
• Maintain 100 concurrent requests 
• Use 200 ms of compute per request 
• Run for 1 minute



Container Case Study: Elastic Beanstalk



Container Case Study: Elastic Beanstalk



Container Case Study: Elastic Beanstalk
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quickly enough to handle load bursts.



Container Case Study: Elastic Beanstalk

Conclusion: Elastic Beanstalk does not scale 
quickly enough to handle load bursts.

Elastic BS



Why should it take minutes (or even seconds) 
to execute scripts that are <1000s of LOC?



2nd generation: containers
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• centralized view 
• init H/W once 

problems: 
• large deployment bundle  
• server spinup
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3rd generation: Lambdas

Hardware

OS

Server and Runtime

RPCs virtual servers

advantages: 
• very fast startup 
• agile deployment 
• share memory 

problems: 
• not flexible

FnA FnZ… Fn0 Fn9…

already 
running

already 
in mem

small 
deployment 

bundle



Lambda elasticity

Repeat ElasticBS experiment 
• Maintain 100 concurrent requests 
• Spin 200 ms per request 
• Run for 1 minute 
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Lambda elasticity

Conclusion: Lambdas are highly elastic 



Lambda elasticity

Conclusion: Lambdas are highly elastic 
(though a little slow)



Outline

Evolution of compute 

Non-conventional virtualization 

Lambda model

Why OpenLambda? 

Conclusion



Lambda model

Run user handlers in response to events 
• web requests (RPC handlers) 
• database updates (triggers) 
• scheduled events (cron jobs) 

Pay per function invocation 
• actually pay-as-you-go 
• no charge for idle time between calls 
• e.g., charge actual_time * memory_cap  



Share everything

Share server pool between customers 
• Any worker can execute any handler 
• No spinup time 
• Less switching 

Encourage specific runtime (C#, Node.JS, Python) 
• Minimize network copying 
• Code will be in resident in memory
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Need for open source serverless

Many research areas 
• Applications, tools, distributed systems, execution engines 
• Evaluate ideas by building, not just simulating

Other recent open-source implementations

AWS Lambda Google Cloud Functions

Azure Functions

First implementations are proprietary

IBM OpenWhisk

OpenLambda: explore further-reaching techniques
• Goal: enable academic research on Lambdas 
• Storage awareness, kernel support, RPC inspection 
• …



OpenLambda research topics

Workloads 
• Workload studies 
• Benchmarks 
• Versioning+dependencies 
• Code characteristics 
• Package management

Distributed systems 
• Databases 
• Load balancing 
• Scatter gather patterns 
• Sessions and streams

Tools 
• Debugging 
• Monetary cost optimization 
• Porting legacy applications

Execution engines 
• Sandboxing 
• Containers 
• Just-in-time interpreters



Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload 
code

user
RPC

…

OpenLambda research topics



Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload 
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics



Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload 
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics



Understanding Lambda workloads
Collaborate with industry, measurement studies 

• e.g., Azure Functions 

Build LambdaBench 
• Everybody joining builds an application 
• Ticketing, calendar, autocomplete, OCR, flash card, stock alert, 

blog, and scientific compute applications 

Trace RPC calls (e.g., AJAX) of existing apps

Gmail:
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Developer tools
Portability 

• E.g., can Django apps run on Lambdas? 

Debugging 
• Understand Lambda flows, may be a complex graph 

Optimizing expense 
• Hard with containers: how to share 1-hour server time across requests? 
• With Lambdas: know cost of every RPC and query 
• Show where money is going
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Building locality-aware Lambdas

Use deep inspection of RPCs for routing 
• Working with gRPC group 
• GSOC project (Stephen Sturdevant)

Locality factors 
• code locality 
• data locality 
• session locality

Load 
Balancer

Lambda workers

m
em
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sk
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sk

numpy …

numpy …

A numpy

call B
(uses numpy)



Building locality-aware Lambdas

Use deep inspection of RPCs for routing 
• Working with gRPC group 
• GSOC project (Stephen Sturdevant)

Locality factors 
• code locality 
• data locality 
• session locality

Load 
Balancer

Lambda workers

DB shard: A-M (keys)

DB shard: N-Z (keys)

call predict XB
Blocal 

query



Building locality-aware Lambdas

Use deep inspection of RPCs for routing 
• Working with gRPC group 
• GSOC project (Stephen Sturdevant)

Locality factors 
• code locality 
• data locality 
• session locality

Load 
Balancer

Lambda workers

browser session
service

session
service

web 
socket

Lambda
Engine

Lambda
Engine

B
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Minimizing latency



Minimizing latency

reduce

How can we reduce base latency?



Execution engine

Sandboxing 
• Process VMs (e.g., JVM): how to mostly initialize? 
• Containers: how to speed up restart and optimize pausing?



Execution engine

Language runtimes 
• Challenge: code warms up over time 
• How to share dynamic optimizations?

code code

worker A worker B

interpreted
compiled

cold

cold

cold

Sandboxing 
• Process VMs (e.g., JVM): how to mostly initialize? 
• Containers: how to speed up restart and optimize pausing?

tracing enables 
inline optimization
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Conclusion
Lambdas finally deliver on promises of the cloud 

• finally pay-as-you-go 
• finally elastic 
• will fundamentally change how people build scalable applications 

New challenges in every area of systems 
• scheduling, isolation, languages, debugging, tools, storage, … 

Getting involved 
• contribute at https://github.com/open-lambda 
• site: https://open-lambda.org/

https://github.com/open-lambda
https://open-lambda.org/

