Serverless Computation
with OpenLambda

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramanit, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Oprew

T Unaffiliated

Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amazon >
cloudfront Rrrcs

>
Queries

Amazon EC2

Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amazon >
cloudfront Rrrcs

>
Queries

Amazon EC2
(VMs)

Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amazon >
cloudfront Rrrcs

>
Queries

Amazon EC2
(VMs)

compute Is evolving

Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amazon >
cloudfront recs

>

Elastic i
Beanstalk Queries

(Containers)

compute Is evolving

Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amnazZon > >
cloudfront recs Queries

(Lambdas)

compute Is evolving

Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amnazZon > >
cloudfront recs Queries

(Lambdas)

orior to the Lambda model, cloud compute
was neither elastic nor pay-as-you-go

Outline

Non-conventional virtualization
Lambda model

Why OpenlLambda®?

Conclusion

How to virtualize compute?

Classic web stack

> Application
RPCs

Server

Hardware

Classic web stack

> Application

RPCs

Server

} weak virtualization

Hardware

1st generation: virtual machines

> Application
RPCs

Server

virtual H/'W

Hardware

1st generation: virtual machines

> Application Application
RPCs

Server Server

virtual H/'W

Hardware

1st generation: virtual machines

> Application Application
RPCs

Server Server

virtual H/W
Hardware
advantages: problems:
e very flexible e interposition
 use any OS e s RAM used? (ballooning)

e redundancy (e.g., FS journal)

2nd generation: containers

> Application Application
RPCs

Server Server

virtual OS

Hardware

advantages:

e centralized view
e init H/W once

Are containers good enough?

Container case studies

Literature: Google Borg

* Internal container platform [
25 second median startup

* 80% of time spent on package installation
* matters for flash crowds, load balance, interactive development, etc

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Container case studies

Literature: Google Borg

* |nternal container platform [1]

25 second median startup

* 80% of time spent on package installation

* matters for flash crowds, load balance, interactive development, etc

Experimental: Amazon Elastic Beanstalk

* Autoscaling cloud service
* Build applications as containerized servers, service RPCs

* Rules dictate when to start/stop (various factors)

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Interesting “autoscaling” rule

New scheduled action

Name:
Must be from 1 to 255 characters in length.
Instances: Min Max
Minimum and Maximum number of instances to run.
Desired capacity: (Optional)

Desired number of instances to run.

Recurrent r

Start ime: | 2016-04-11T21:00:00Z M luTe
The time the action is scheduled to begin.

Current UTC time: 2016-04-11T720:44:24Z7 Cancel m

Experiment

Simulate a small short burst
 Maintain 100 concurrent requests
 Use 200 ms of compute per request
 Run for 1 minute

Container Case Study: Elastic Beanstalk

(dp) 1 OOO/O n

S 80%-

m O

= 60% -

£ 40%-

O -

S 20% -~

o 0% +—=——— T T T T 1
n n 0] 7)) n 2] 2]
{Q) — A {@) o - -
o ~— QA {9)

Latency

Container Case Study: Elastic Beanstalk

v 100% -

S 80%-

m O

(- O/

o 60% 100*200ms

GCJ 40% -

O -

a—) 200/0 /

0 Oo/o — T 1 T T 1
/) /) N /)] (7)) N N
l9) ~— (q\| l9) o o o
o — A 9

Latency

Container Case Study: Elastic Beanstalk

v 100% -

& 80%-

m O

o O/ -

o 00% 100*200ms

GCJ 40% -

O _

6 200/0 /

.t Oo/o — T T T T |
/p) n (/)] /p) 7)) 7)) 7p)
0 — A @) o o o
d ™~ A 0

Latency

Conclusion: Elastic Beanstalk does not scale
quickly enough to handle load bursts.

Container Case Study: Elastic Beanstalk

Elastic BS

ow 100% -

S 80%-

m O

G 60%- 100*200ms -

GCJ 40% -

O o/ -

.t Oo/o — T | 1 T |
/) /) N 7)) (7)) N N
9] — (Q\| [9) o o o
o e Al (@)

Latency

Conclusion: Elastic Beanstalk does not scale
quickly enough to handle load bursts.

Why should it take minutes (or even seconds)
to execute scripts that are <1000s of LOC?

2nd generation: containers

> Application Application
RPCs

Server Server

virtual OS

Hardware

advantages: problems:

e centralized view e |large deployment bundle
e init H/W once e server spinup

2nd generation: containers

> Application

Application

RPCs

Server Server

virtual OS

Hardware

3rd generation: Lambdas

Application Application

virtual servers

Server and Runtime

Hardware

3rd generation: Lambdas

Application Application

virtual servers

Server and Runtime

Hardware

serverless computing

3rd generation: Lambdas

virtual servers

Server and Runtime

Hardware

decompose application

3rd generation: Lambdas

small
deployment

m m m m “““““ bundle

RPCS virtual servers
already Server and Runtime already
running N mem

advantages: problems:
e very fast startup * not flexible

* agile deployment
e share memory

Lambda elasticity

Repeat ElasticBS experiment
 Maintain 100 concurrent requests
e Spin 200 ms per request
 Run for 1 minute

Lambda elasticity

Percent of Regs

100%] AWS Lambda Elastic BS

80%

oU% 1 100*200ms

40%

200/0 /

Oo/o | | I | |

) n ") n) 7 %)
To! - Al To! o o -,
d \ QA L0

Latency

Lambda elasticity

8 100%] AWS Lambda Elastic BS

2 80%

o o/, -

O . 100*200ms—~

GCJ 40%

S 20% _—

o Oo/o I | | I 1
g 2 & 8 8 & &
o - Al L0

Latency

Conclusion: Lambdas are highly elastic

Lambda elasticity

8 100% :I AWS Lambda Elastic BS

2 80%

o o/, -

O . 100*200ms—~

GCJ 40%

S 20% _—

o Oo/o I | | I 1
g 2 & 8 8 & &
o - Al L0

Latency

Conclusion: Lambdas are highly elastic
(though a little slow)

Outline

Lambda model
Why OpenlLambda®?

Conclusion

Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)

Pay per function invocation
e actually pay-as-you-go
* no charge for idle time between calls
e e.g,charge actual time * memory cap

Share everything

Share server pool between customers
 Any worker can execute any handler
 No spinup time
* Less switching

Encourage specific runtime (C#, Node.JS, Python)
 Minimize network copying
 Code will be in resident in memory

Multi-node architecture

load balancers workers

Load Balancer

Load Balancer

handler store

Multi-node architecture

developer

load balancers

upload
code

>

Load Balancer

Load Balancer

handler store

workers

Multi-node architecture

load balancers workers

Load Balancer

Load Balancer large —<

—
EEEN

handler store

wvor| | EIED

Multi-node architecture

user

load balancers

>

RPC

Load Balancer

Load Balancer

handler store

workers

Multi-node architecture

load balancers workers

user 4 Load Balancer
RPC \

Load Balancer

handler store

Multi-node architecture

load balancers workers

user 4 Load Balancer
RPC \

Load Balancer

handler store/

Multi-node architecture

load balancers workers

user 4 Load Balancer
RPC \

Load Balancer

handler store/

Multi-node architecture

load balancers

user <«

RPC

Load Balancer

Load Balancer

handler store

workers

N

114} sandbox

Server

Outline

Why OpenLambda?

Conclusion

Need for open source serverless

Many research areas

 Applications, tools, distributed systems, execution engines
e FEvaluate ideas by building, not just simulating

Need for open source serverless

Many research areas

 Applications, tools, distributed systems, execution engines
e FEvaluate ideas by building, not just simulating

First Implementations are proprietary

\Ilﬂ AWS Lambda .) Google Cloud Functions

Need for open source serverless

Many research areas

 Applications, tools, distributed systems, execution engines
e FEvaluate ideas by building, not just simulating

First Implementations are proprietary

\llﬂ AWS Lambda .) Google Cloud Functions

2 OpenlLambda: explore further-reaching technigues

 (Goal: enable academic research on Lambdas
o Storage awareness, kernel support, RPC inspection

Need for open source serverless

Many research areas
 Applications, tools, distributed systems, execution engines
e FEvaluate ideas by building, not just simulating

First Implementations are proprietary

\Ilﬂ AWS Lambda .) Google Cloud Functions

2 OpenlLambda: explore further-reaching technigues

 (Goal: enable academic research on Lambdas
o Storage awareness, kernel support, RPC inspection

Other recent open-source implementations

{_ ") Azure Functions “ IBM OpenWhisk

OpenlLambda research topics

Workloads Distributed systems

Workload studies Databases
Benchmarks Load balancing
Versioning+dependencies e Scatter gather patterns
Code characteristics e Sessions and streams
Package management

Tools Execution engines
 Debugging e Sandboxing
 Monetary cost optimization (Containers
 Porting legacy applications e Just-in-time interpreters

OpenlLambda research topics

load balancers workers

user 4 Load Balancer
RPC \
Load Balancer

handler store

i 2 [l

developer >
upload

code

OpenlLambda research topics

load balancers workers

user «d Load Balancer
RPC
workloads -
Load Balancer

execution engine

handler store

i 2 [l

developer >

upload
tools code

distributed systems

OpenlLambda research topics

load balancers

workers

d Load Balancer
RPC \

workloads

Load Balancer

handler store

developer

tools

upload
code

i 2 [l

distributed systems

execution engine

Understanding Lambda workloads

Collaborate with industry, measurement studies
e e.g., Azure Functions

Build LambdaBench

 Everybody joining builds an application
* Ticketing, calendar, autocomplete, OCR, flash card, stock alert,
blog, and scientitic compute applications

Trace RPC calls (e.g., AJAX) of existing apps

GET
|
|

.o et 231s

Gmail: ~

POST
1
I
l

Time (seconds)

OpenlLambda research topics

load balancers workers

user «d Load Balancer
RPC
workloads -
Load Balancer

execution engine

handler store

i 2 [l

developer >

upload
tools code

distributed systems

OpenlLambda research topics

load balancers workers

user «d Load Balancer
RPC
workloads -
Load Balancer

execution engine

handler store

o[-
upload

tools code

distributed systems

Developer tools
Portability

 E.g., can Django apps run on Lambdas?

Debugging

 Understand Lambda flows, may be a complex graph

Optimizing expense
e Hard with containers: how to share 1-hour server time across requests?

« With Lambdas: know cost of every RPC and query
 Show where money is going

Maln Thread
Pase HTMLL 26D Evaa js:1) Ev.) Ev. 1) falva s 1) | Pane e
twval.. . 22) Ev..) (amon_von) F)} (@ .n ANON.. 1o . A1)

OpenlLambda research topics

load balancers workers

user «d Load Balancer
RPC
workloads -
Load Balancer

execution engine

handler store

i 2 [l

developer >

upload
tools code

distributed systems

OpenlLambda research topics

load balancers

user

workloads

RPC

developer

tools

uploac
code

Load Balancer

Load Balancer

handler store

i 2 [l

distributed systems

workers

execution engine

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Locality factors
e code |locality
e data locality
e session locality

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Locality factors

e code locality
e data locality

* session locality Lambda workers

Balancer

Building locality-aware Lambdas

Use deep inspection of RPCs for routing

« Working with gRPC group

« GSOC project (Stephen Sturdevant)

Locality factors

e code locality
e data locality
e session locality

call G—» Sk
Balancer

(uses numpy)

Lambda workers

mem

disk

mem

disk

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Locality factors

e code locality
« data locality

* session locality Lambda workers

DB shard: A-M (keys)

predict X

Balancer —_— e

local
query
DB shard: N-Z (keys)

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Locality factors
e code locality

e data locality
» session locality Lambda workers

M] SCS3ion WYLE a
service e
Load
session Lambda
service Engine

Balancer

OpenlLambda research topics

load balancers workers

user «d Load Balancer
RPC
workloads -
Load Balancer

execution engine

handler store

i 2 [l

developer >

upload
tools code

distributed systems

OpenlLambda research topics

load balancers workers

user «d Load Balancer
RPC
workloads -
Load Balancer

execution engine

handler store

i 2 [l

developer >

upload
tools code

distributed systems

Minimizing latency

Percent of Regs

100%] AWS Lambda Elastic BS

80%

oU% 1 100*200ms

40%

20°/o /

Oo/o | | [| |

) n ") n) 7 %)
To! - Al To! o - -,
d \ QA L0

Latency

Minimizing latency

8 100%] AWS Lambda Elastic BS

2 80%

(- o/, -

O . 100*200ms—~

GCJ 40%

O

Qh) 200/0 /

o Oo/o I | | I 1
7%, 7 %) 7% % % %,
e — Q¥ 0 o - -
o - Al L0

Latency

How can we reduce base latency?

Execution engine

Sandboxing

 Process VMs (e.g., JVM): how to mostly initialize”
 (Containers: how to speed up restart and optimize pausing?

Execution engine

Sandboxing

 Process VMs (e.g., JVM): how to mostly initialize”
 (Containers: how to speed up restart and optimize pausing?

Language runtimes

 (Challenge: code warms up over time
 How to share dynamic optimizations?

code

/

tracing enables

Inline optimization

worker A

code

““"""'lnn

* *
'S *
: cold :
. L
* L4
3 *

e BN

T T L

““"""'lnn
* L 4
'S *
. CO 5
* L4
L 4 *
e BN
LT T T L

-
« .
A -

worker B

Interpreted
. compiled

Outline

Evolution of compute
Non-conventional virtualization
Lambda moadel

Why OpenlLambda”

Conclusion

Conclusion

Lamlbdas finally deliver on promises of the cloud
* finally pay-as-you-go
e finally elastic
* will fundamentally change how people build scalable applications

New challenges in every area of systems
e scheduling, isolation, languages, debugging, tools, storage, ...

Getting involved

e contribute at https://github.com/open-lambda
 site: https://open-lambda.org/

UNIVERSITY OF WISCONSIN-MADISON

T WISCONSIN

https://github.com/open-lambda
https://open-lambda.org/

