
†

Serverless Computation
with OpenLambda

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran  
Venkataramani†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Unaffiliated

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute: dynamic logic
(e.g., Python)

Storage:
application data

RPCs Queries

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute: dynamic logic
(e.g., Python)

Storage:
application data

RPCs Queries

(VMs)

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute: dynamic logic
(e.g., Python)

Storage:
application data

compute is evolving

RPCs Queries

(VMs)

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute: dynamic logic
(e.g., Python)

Storage:
application data

compute is evolving

RPCs Queries

(Containers)

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute: dynamic logic
(e.g., Python)

Storage:
application data

RPCs Queries

compute is evolving

(Lambdas)

Web development in the cloud

CDN: static content
(e.g., JavaScript)

Compute: dynamic logic
(e.g., Python)

Storage:
application data

prior to the Lambda model, cloud compute
was neither elastic nor pay-as-you-go

RPCs Queries

(Lambdas)

Outline

Evolution of compute

Non-conventional virtualization

Lambda model

Why OpenLambda?

Conclusion

How to virtualize compute?

Classic web stack

Hardware

OS

Server

Application
RPCs

Classic web stack

Hardware

OS

Server

Application
RPCs

weak virtualization

Hardware

OS

Server

Application
RPCs

1st generation: virtual machines

virtual H/W

1st generation: virtual machines

Hardware

OS

Server

Application
RPCs

virtual H/W
OS

Server

Application

1st generation: virtual machines

Hardware

OS

Server

Application
RPCs

virtual H/W
OS

Server

Application

advantages:
• very flexible
• use any OS

problems:
• interposition
• is RAM used? (ballooning)
• redundancy (e.g., FS journal)

2nd generation: containers

Hardware

OS

Server

Application
RPCs

virtual OS
Server

Application

advantages:
• centralized view
• init H/W once

Are containers good enough?

Container case studies

Literature: Google Borg
• Internal container platform [1]
• 25 second median startup
• 80% of time spent on package installation
• matters for flash crowds, load balance, interactive development, etc

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Container case studies

Literature: Google Borg
• Internal container platform [1]
• 25 second median startup
• 80% of time spent on package installation
• matters for flash crowds, load balance, interactive development, etc

Experimental: Amazon Elastic Beanstalk
• Autoscaling cloud service
• Build applications as containerized servers, service RPCs
• Rules dictate when to start/stop (various factors)

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Interesting “autoscaling” rule

Experiment

Simulate a small short burst
• Maintain 100 concurrent requests
• Use 200 ms of compute per request
• Run for 1 minute

Container Case Study: Elastic Beanstalk

Container Case Study: Elastic Beanstalk

Container Case Study: Elastic Beanstalk

Conclusion: Elastic Beanstalk does not scale
quickly enough to handle load bursts.

Container Case Study: Elastic Beanstalk

Conclusion: Elastic Beanstalk does not scale
quickly enough to handle load bursts.

Elastic BS

Why should it take minutes (or even seconds)
to execute scripts that are <1000s of LOC?

2nd generation: containers

Hardware

OS

Server

Application
RPCs

virtual OS
Server

Application

advantages:
• centralized view
• init H/W once

problems:
• large deployment bundle
• server spinup

2nd generation: containers

Hardware

OS

Server

Application
RPCs

virtual OS
Server

Application

3rd generation: Lambdas

Hardware

OS

Server and Runtime

Application
RPCs virtual servers

Application

3rd generation: Lambdas

Hardware

OS

Server and Runtime

Application
RPCs virtual servers

Application

serverless computing

3rd generation: Lambdas

Hardware

OS

Server and Runtime

RPCs virtual servers

decompose application

FnA FnZ… Fn0 Fn9…

3rd generation: Lambdas

Hardware

OS

Server and Runtime

RPCs virtual servers

advantages:
• very fast startup
• agile deployment
• share memory

problems:
• not flexible

FnA FnZ… Fn0 Fn9…

already
running

already
in mem

small
deployment

bundle

Lambda elasticity

Repeat ElasticBS experiment
• Maintain 100 concurrent requests
• Spin 200 ms per request
• Run for 1 minute

Lambda elasticity

Lambda elasticity

Conclusion: Lambdas are highly elastic

Lambda elasticity

Conclusion: Lambdas are highly elastic
(though a little slow)

Outline

Evolution of compute

Non-conventional virtualization

Lambda model

Why OpenLambda?

Conclusion

Lambda model

Run user handlers in response to events
• web requests (RPC handlers)
• database updates (triggers)
• scheduled events (cron jobs)

Pay per function invocation
• actually pay-as-you-go
• no charge for idle time between calls
• e.g., charge actual_time * memory_cap

Share everything

Share server pool between customers
• Any worker can execute any handler
• No spinup time
• Less switching

Encourage specific runtime (C#, Node.JS, Python)
• Minimize network copying
• Code will be in resident in memory

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

developer
upload
code

H1 H2

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

small

large

H1 H2

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

user
RPC

H1 H2

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

user
RPC

H1 H2

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

user
RPC

H2

H1 H2

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

user
RPC

H2 sandbox

H1 H2

Multi-node architecture

Load Balancer

Server

Python

Server

Python

workers

Load Balancer

load balancers

…

…

handler store

user
RPC

H2 sandbox

H1 H2

Outline

Evolution of compute

Non-conventional virtualization

Lambda model

Why OpenLambda?

Conclusion

Need for open source serverless

Many research areas
• Applications, tools, distributed systems, execution engines
• Evaluate ideas by building, not just simulating

Need for open source serverless

Many research areas
• Applications, tools, distributed systems, execution engines
• Evaluate ideas by building, not just simulating

AWS Lambda Google Cloud Functions

First implementations are proprietary

Need for open source serverless

Many research areas
• Applications, tools, distributed systems, execution engines
• Evaluate ideas by building, not just simulating

AWS Lambda Google Cloud Functions

First implementations are proprietary

OpenLambda: explore further-reaching techniques
• Goal: enable academic research on Lambdas
• Storage awareness, kernel support, RPC inspection
• …

Need for open source serverless

Many research areas
• Applications, tools, distributed systems, execution engines
• Evaluate ideas by building, not just simulating

Other recent open-source implementations

AWS Lambda Google Cloud Functions

Azure Functions

First implementations are proprietary

IBM OpenWhisk

OpenLambda: explore further-reaching techniques
• Goal: enable academic research on Lambdas
• Storage awareness, kernel support, RPC inspection
• …

OpenLambda research topics

Workloads
• Workload studies
• Benchmarks
• Versioning+dependencies
• Code characteristics
• Package management

Distributed systems
• Databases
• Load balancing
• Scatter gather patterns
• Sessions and streams

Tools
• Debugging
• Monetary cost optimization
• Porting legacy applications

Execution engines
• Sandboxing
• Containers
• Just-in-time interpreters

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

OpenLambda research topics

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Understanding Lambda workloads
Collaborate with industry, measurement studies

• e.g., Azure Functions

Build LambdaBench
• Everybody joining builds an application
• Ticketing, calendar, autocomplete, OCR, flash card, stock alert,

blog, and scientific compute applications

Trace RPC calls (e.g., AJAX) of existing apps

Gmail:

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Developer tools
Portability

• E.g., can Django apps run on Lambdas?

Debugging
• Understand Lambda flows, may be a complex graph

Optimizing expense
• Hard with containers: how to share 1-hour server time across requests?
• With Lambdas: know cost of every RPC and query
• Show where money is going

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
• Working with gRPC group
• GSOC project (Stephen Sturdevant)

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
• Working with gRPC group
• GSOC project (Stephen Sturdevant)

Locality factors
• code locality
• data locality
• session locality

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
• Working with gRPC group
• GSOC project (Stephen Sturdevant)

Locality factors
• code locality
• data locality
• session locality

Load
Balancer

Lambda workers

call B ?

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
• Working with gRPC group
• GSOC project (Stephen Sturdevant)

Locality factors
• code locality
• data locality
• session locality

Load
Balancer

Lambda workers

m
em

di
sk

m
em

di
sk

numpy …

numpy …

A numpy

call B
(uses numpy)

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
• Working with gRPC group
• GSOC project (Stephen Sturdevant)

Locality factors
• code locality
• data locality
• session locality

Load
Balancer

Lambda workers

DB shard: A-M (keys)

DB shard: N-Z (keys)

call predict XB
Blocal

query

Building locality-aware Lambdas

Use deep inspection of RPCs for routing
• Working with gRPC group
• GSOC project (Stephen Sturdevant)

Locality factors
• code locality
• data locality
• session locality

Load
Balancer

Lambda workers

browser session
service

session
service

web
socket

Lambda
Engine

Lambda
Engine

B

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Load Balancer

Server

Python

workers

Load Balancer

load balancers

…

handler store

H2 sandbox

H1 H2developer
upload
code

user
RPC

…

workloads

tools

distributed systems

execution engine

OpenLambda research topics

Minimizing latency

Minimizing latency

reduce

How can we reduce base latency?

Execution engine

Sandboxing
• Process VMs (e.g., JVM): how to mostly initialize?
• Containers: how to speed up restart and optimize pausing?

Execution engine

Language runtimes
• Challenge: code warms up over time
• How to share dynamic optimizations?

code code

worker A worker B

interpreted
compiled

cold

cold

cold

Sandboxing
• Process VMs (e.g., JVM): how to mostly initialize?
• Containers: how to speed up restart and optimize pausing?

tracing enables
inline optimization

Outline

Evolution of compute

Non-conventional virtualization

Lambda model

Why OpenLambda?

Conclusion

Conclusion
Lambdas finally deliver on promises of the cloud

• finally pay-as-you-go
• finally elastic
• will fundamentally change how people build scalable applications

New challenges in every area of systems
• scheduling, isolation, languages, debugging, tools, storage, …

Getting involved
• contribute at https://github.com/open-lambda
• site: https://open-lambda.org/

https://github.com/open-lambda
https://open-lambda.org/

