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Web development in the cloud

CDN: static content Compute: dynamic logic Storage:
(e.g., JavaScript) (e.g., Python) application data

amnazZon > >
cloudfront recs Queries

(Lambdas)

orior to the Lambda model, cloud compute
was neither elastic nor pay-as-you-go



Outline

Non-conventional virtualization
Lambda model

Why OpenlLambda®?

Conclusion



How to virtualize compute?
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1st generation: virtual machines
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Hardware
advantages: problems:
e very flexible e interposition
 use any OS e s RAM used? (ballooning)

e redundancy (e.g., FS journal)



2nd generation: containers

> Application Application
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advantages:

e centralized view
e init H/W once



Are containers good enough?



Container case studies

Literature: Google Borg

* Internal container platform [
25 second median startup

* 80% of time spent on package installation
* matters for flash crowds, load balance, interactive development, etc

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
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Container case studies

Literature: Google Borg

* |nternal container platform [1]

25 second median startup

* 80% of time spent on package installation

* matters for flash crowds, load balance, interactive development, etc

Experimental: Amazon Elastic Beanstalk

* Autoscaling cloud service
* Build applications as containerized servers, service RPCs

* Rules dictate when to start/stop (various factors)

[1] Large-scale cluster management at Google with Borg.
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
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Interesting “autoscaling” rule

New scheduled action

Name:
Must be from 1 to 255 characters in length.
Instances: Min Max
Minimum and Maximum number of instances to run.
Desired capacity: (Optional)

Desired number of instances to run.

Recurrent r

Start ime: | 2016-04-11T21:00:00Z M luTe
The time the action is scheduled to begin.

Current UTC time: 2016-04-11T720:44:24Z7 Cancel m



Experiment

Simulate a small short burst
 Maintain 100 concurrent requests
 Use 200 ms of compute per request
 Run for 1 minute
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quickly enough to handle load bursts.



Container Case Study: Elastic Beanstalk
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Why should it take minutes (or even seconds)
to execute scripts that are <1000s of LOC?



2nd generation: containers

> Application Application
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Server Server

virtual OS

Hardware

advantages: problems:

e centralized view e |large deployment bundle
e init H/W once e server spinup
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3rd generation: Lambdas
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decompose application



3rd generation: Lambdas

small
deployment

m m m m “““““ bundle

RPCS virtual servers
already Server and Runtime already
running N mem

advantages: problems:
e very fast startup * not flexible

* agile deployment
e share memory



Lambda elasticity

Repeat ElasticBS experiment
 Maintain 100 concurrent requests
e Spin 200 ms per request
 Run for 1 minute



Lambda elasticity
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Conclusion: Lambdas are highly elastic
(though a little slow)



Outline

Lambda model
Why OpenlLambda®?

Conclusion



Lambda model

Run user handlers in response to events

* web requests (RPC handlers)
e database updates (triggers)
e scheduled events (cron jobs)

Pay per function invocation
e actually pay-as-you-go
* no charge for idle time between calls
e e.g,charge actual time * memory cap



Share everything

Share server pool between customers
 Any worker can execute any handler
 No spinup time
* Less switching

Encourage specific runtime (C#, Node.JS, Python)
 Minimize network copying
 Code will be in resident in memory



Multi-node architecture
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Need for open source serverless

Many research areas
 Applications, tools, distributed systems, execution engines
e FEvaluate ideas by building, not just simulating

First Implementations are proprietary

\Ilﬂ AWS Lambda . ) Google Cloud Functions

2 OpenlLambda: explore further-reaching technigues

 (Goal: enable academic research on Lambdas
o Storage awareness, kernel support, RPC inspection

Other recent open-source implementations

{_ ") Azure Functions “ IBM OpenWhisk



OpenlLambda research topics

Workloads Distributed systems

Workload studies  Databases
Benchmarks  Load balancing
Versioning+dependencies e Scatter gather patterns
Code characteristics e Sessions and streams
Package management

Tools Execution engines
 Debugging e Sandboxing
 Monetary cost optimization  (Containers
 Porting legacy applications e Just-in-time interpreters
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Understanding Lambda workloads

Collaborate with industry, measurement studies
e e.g., Azure Functions

Build LambdaBench

 Everybody joining builds an application
* Ticketing, calendar, autocomplete, OCR, flash card, stock alert,
blog, and scientitic compute applications

Trace RPC calls (e.g., AJAX) of existing apps

GET
|
|
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Gmail: ~

POST
1
I
l

Time (seconds)
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Developer tools
Portability

 E.g., can Django apps run on Lambdas?

Debugging

 Understand Lambda flows, may be a complex graph

Optimizing expense
e Hard with containers: how to share 1-hour server time across requests?

« With Lambdas: know cost of every RPC and query
 Show where money is going

Maln Thread
Pase HTMLL 26D Evaa js:1) Ev. ) Ev. 1) falva s 1) | Pane e
twval.. . 22) Ev..) (amon_von) F )} (@ .n ANON.. 1o . A1)
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Building locality-aware Lambdas

Use deep inspection of RPCs for routing

« Working with gRPC group

« GSOC project (Stephen Sturdevant)

Locality factors

e code locality
e data locality
e session locality

call G—» Sk
Balancer

(uses numpy)

Lambda workers

mem

disk

mem

disk




Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Locality factors

e code locality
« data locality

* session locality Lambda workers

DB shard: A-M (keys)

predict X

Balancer —_— e

local
query
DB shard: N-Z (keys)




Building locality-aware Lambdas

Use deep inspection of RPCs for routing
« Working with gRPC group
« GSOC project (Stephen Sturdevant)

Locality factors
e code locality

e data locality
» session locality Lambda workers

M ] SCS3ion WYLE a
service e
Load
session Lambda
service Engine
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Minimizing latency
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Minimizing latency
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How can we reduce base latency?
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Execution engine

Sandboxing

 Process VMs (e.g., JVM): how to mostly initialize”
 (Containers: how to speed up restart and optimize pausing?

Language runtimes

 (Challenge: code warms up over time
 How to share dynamic optimizations?

code

/

tracing enables

Inline optimization
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Conclusion

Lamlbdas finally deliver on promises of the cloud
* finally pay-as-you-go
e finally elastic
* will fundamentally change how people build scalable applications

New challenges in every area of systems
e scheduling, isolation, languages, debugging, tools, storage, ...

Getting involved

e contribute at https://github.com/open-lambda
 site: https://open-lambda.org/

UNIVERSITY OF WISCONSIN-MADISON
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