Interactive Debugging for Big Data Analytics

Muhammad Ali Gulzar, Xueyuan Han, Matteo Interlandi,

Shaghayegh Mardani, Sai Deep Tetali, Tyson Condie, Todd Millstein,
Miryung Kim

University of California, Los Angeles

Debugging Big Data Analytics

 Today’s platforms lack debugging support
— Programs (i.e., queries, jobs) are batch executed / black boxes
— Errors reflect low-level details (e.g., task id?!) not relevant to the logical bug
— Long program execution time =>long development cycles

* What do programmers do?
— Trial and error debugging on sample data
— Post-mortem analysis of error logs
— Analyze physical view of the execution (a job id, failed node, etc).

N
1= stackoverflow | Questions | Tags | users | &

Trying to debug a Spark
“I would like Application on a cluster... trol
through the Spaik s _ wuue vl e woi ker nodes
when | submit my application ... | am assuming |

should setup Spark on Eclipse ... to enable stepping
through Spark source code on the worker nodes.”

command for submitting application

./sbin/spark-submit --class Application --master URL ~/a

Now, | would like to understand the flow of control throug source code on the worker
nodes when | submit my application(l just want to use one e given examples that use
reduce()). | am assuming | should setup Spark on Eclipse#The Eclipse setup link on the Apache
Spark website seems to be broken. | would appreciate some guidance on setting up Spark and
Eclipse to enable stepping through Spark source code on the worker nodes.

Thanks!

eclipse debugging apache-spark

share improve this question asked Mar 17 at 3:19

AndroidDev93
698 » 3+ 1538

After a year, still no good answers!

A, Add the relevant spark jars to the eclipse project. And then set the master in the code. And now

- 1 1 r

A, Haveyou tried passing remote debug parameters to worker JVM? | think its something like

mem meale meem mecdbmae melee e e N B e TV . e enee b A M Ll 8 e A 8 oo weem e ANNAE

You could run the Spark application in local mode if you just need to debug the logic of your
transformations. This can be run in vour IDE and vou'll be able to debua like anv other aoplication:

A
&, Whenyou run a spark application on yarn, there is an option like this:
0 YARN_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5455 $YARN_OPTS"
\ You can add it to yarn-env.sh and remote debugging will be available via port 5455 .
If you use spark in standalone mode, | believe this can help:

export SPARK_JAVA OPTS=-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005

shere iEprove is answer edited Jul 20 at 21:23 answered Jul 3 at 9:14
Cleb user3504158
1,510 # 2 » 12 » 24 1

BigDebug Project Overview

11 ...
12 val textFile =spark

BigDebug: Debugging Primitives

: : 13 .textFile("hdfs://...")
for Interactive Big Data Enable Latency | |14 val counts = textFile
Processing in Spark rap(uord > (uord, 1))
[ICSE 2016] Enable Watchpoint 7 -reduceByKey(_ + _)

18 counts.collect
19

$> a=>a.contains(“12”)

Simulated Breakpoint
On-Demand Watchpoint Instrument a1 word = textFile

: o) — .flatMap(l => l.split(" "))
Crash CUI,DI’It Remediation val counts = textFile o + word.enablelLatencyAlert()
.flatMap(1l => 1l.split(" "))

Forward Backward Tracing .map(word => (word, 1)) f"l ;g::f,;o;n:‘ggj>a contains(“12”))

.map(word => (word, 1))
.reduceByKey(_ + _)

.reduceByKey(_ +)

Titian: Data Provenance for Fine- Vega: Incremental Computation for

Grained Tracing Interactive Debugging
[PVLDB 2016] [Under Review]

Example Query Development Session

* Dataset: NYC Open Data Project

— Calls to non-emergency service centers

— Dataset contains call records for 2010-2015
e Record contents: call time, agency, caller location, etc.

* Query: Identify the agencies that received the

most calls during busy hours
— E.g., busy hour if number of calls > 10,000

Spark Program

case class Calls(id:String, hour:Int, agency:String,...)
format = new SimpleDateFormat("M/d/y h:m:sa")
input = sc.textFile("hdfs://...")
calls =input.map(_.split(","))
.map(r => Calls(r(0),format.parse(r(1)).getHours,r(2),...)

calls.registerTempTable("calls")
hist = sgqlContext.sql("

SELECT agency, count(*)

FROM calls

JOIN (
SELECT hour
FROM calls

GROUP BY hour
HAVING count(*)> 100000
) counts
ON calls.hour=counts.hour
GROUP BY agency")
hist.show()

Extract Dataset from HDFS

Transform it into a DataFrame (i.e., table)
Load it into Spark SQL

case class Calls(id:String, hour:Int, agency:String,...)
format = new SimpleDateFormat("M/d/y h:m:sa")
input = sc.textFile("hdfs://...")
calls =input.map(_.split(","))
.map(r => Calls(r(0),format.parse(r(1)).getHours,r(2),...)

calls.registerTempTable("calls")
hist = sgqlContext.sql("

SELECT agency, count(*)

FROM calls

JOIN (
SELECT hour
FROM calls

GROUP BY hour
HAVING count(*)> 100000
) counts
ON calls.hour=counts.hour
GROUP BY agency")
hist.show()

Express Query in Spark SQL

case class Calls(id:String, hour:Int, agency:String,...)
format = new SimpleDateFormat("M/d/y h:m:sa")
input = sc.textFile("hdfs://...")
calls =input.map(_.split(","))
.map(r => Calls(r(0),format.parse(r(1)).getHours,r(2),...)
calls.registerTempTable("calls")
hist = sglContext.sal("

SELECT agency, count(*) ™ Join busy hours

FROM calls with calls then
SELECT hour group by agency
FROM calls dantidydhetbesy hours
GROUP BY hour =‘->J Oy y
HAVING count(*)> 100000 ey ribaltsof 1€5060

counts received by each
ON calls.hour=counts.hour
GROUP BY agency") | agency

hist.show()

Debugging Query Results

* Analyst observes some unexpected results

— Agencies that should not appear
e e.g., Brooklyn Public Library

— Expected agencies that should appear
* e.g, NYPD, NYFD

e Titian support for query triage
— Analyst can trace back from outlier results to
contributing data at some intermediate stage
— Analyst can execute queries against intermediate
data leading to outlier results

Query Triage with Titian

* Intermediate results for subquery

— Trace back to subquery and show distribution of calls per hour
— On intermediate data leading to outlier results

4000000
SELECT hour, count(*)
3500000
FROM calls - .
3000000 < | Significant skew in the
GROUP BY hour 500000 midnight hour=0!

2000000

1500000

1000000

500000

ldentify Bug and Revise the Query

The Bug

— System assigns defaultvalue hour=0for...

— Calls that did not log a time

Possible course of action
— Filter out calls assigned to hour=0

SELECT agency, count(*)

FROM calls

JOIN (
SELECT hour
FROM calls

WHERE hour != 0 <
GROUP BY hour
HAVING count(*) > 100000
) counts

ON calls.hour=counts.hour
GROUP BY agency

Introduce predicate that filters
out midnight hour

Vega: Re-execute revised Query

* Vega materializes intermediate stage results
— i.e., The previous subquery result is saved

* Vega Query Rewriter leverages this to rewrite

the query into...

SELECT agency, count(™)
FROM calls

JOIN counts
WHERE counts.hour != o<:
ON calls.hour = counts.hour

GROUP BY agency

Materialized result from
previous execution

Rewrite filter to remove hour 0
from joining records

Vega: Modified Query Evaluation

* Execute an incremental join
— “Diff” records specify changes in the (join) result
— For this example, we incrementally remove all records
for hour O from join and final aggregation results

4096

PO - & Spark
* Vega Optimizer Results 1024 | —o— Vogs
_. 256 |
Consequence: over an order-of- D -
. . . Q 64
magnitude runtime improvement = -y r
16 ¢ o
4 _—'
¥

1 1 1 1 1 1 |

8 16 32 64 128 256
Dataset Size (GB)

Automated Isolation of Failure-
Inducing Inputs for Big Data Analytics

* When a program fails, a user may want to
investigate a subset of the original input inducing
a crash, a failure, or a wrong outcome.

e Delta Debugging [Zeller 1999]

— Well known debugging algorithm for minimizing

failure-inducing inputs

— Requires multiple runs to isolate failure-inducing
Inputs

Background: Delta Debugging

[Zeller, FSE 1999]

First we run the test to find the failure inducing input dataset

Background: Delta Debugging

[Zeller, FSE 1999]

First, we run the test to find the failure inducing input dataset

Test Fails

—=>

Background: Delta Debugging

[Zeller, FSE 1999]

Second, we split the failinginput data

Test Fails Split

=

HARCARRAERARRRR RN
TR @

(%]
= =
=

p@
)
2

Al
AR RARATE

est Passe
est Fails

Background: Delta Debugging
[Zeller, FSE 1999]

est Fa

=

a
n
S

= =
=

p@
)
2

Al
AR RARATE

est Passe
est Fails

Background: Delta Debugging
[Zeller, FSE 1999]

est Fa

Background: Delta Debugging
[Zeller, FSE 1999]

i

I
-

a
n
S

I

)
0
= =
=

p@
)
2

Al
AR RARATE

Passe
st Fails

e

est Fa

Scalable Automated Isolation of
Failure-Inducing Inputs

* Leverage data provenance to reduce search space
— Avoid costly executions on data not relevant to the bug

* Leverage Vega optimize subsequentruns.

Titian Delta Debugging

> > =

Conclusion

* BigDebug Project
— Debugging Primitives for Interactive Big Data Processing in Apache Spark
— https://sites.google.com/site/sparkbigdebug/

* Titian: Interactive Data Provenance
— Supports trace back queries from a set of results
— Execution replay from an intermediate point

* Vega: Optimizing modified query execution
— Novel query rewrite mechanism that pushes changes backwards to save work
— Incremental evaluation that operates on data changes induced by query
modifications

