
Interactive	Debugging	for	Big	Data	Analytics

Muhammad Ali Gulzar, Xueyuan Han, Matteo Interlandi,
Shaghayegh Mardani, Sai Deep Tetali, Tyson Condie, Todd Millstein,
Miryung Kim
University of California, Los Angeles



Debugging	Big	Data	Analytics

• Today’s	platforms	lack	debugging	support	
– Programs	(i.e.,	queries,	 jobs)	are	batch	executed	 /	black	boxes
– Errors	reflect	 low-level	details	 (e.g.,	task	id?!)	not	relevant	to	the	 logical	bug
– Long	program	execution	 time	 =>	long	development	 cycles	

• What	do	programmers	do?
– Trial	and	error debugging	on	sample	 data
– Post-mortem	 analysis	of	error	logs	
– Analyze	physical	view	of	the	execution	 (a	job	id,	failed	node,	etc).	



“I	would	like	to	understand	the	flow	of	control	
through	the	Spark	source	code	on	the	worker	nodes	
when	I	submit	my	application	…	I	am	assuming	I	

should	setup	Spark	on	Eclipse	…	to	enable	stepping	
through	Spark	source	code	on	the	worker	nodes.”

Trying	to	debug	a	Spark	
Application	on	a	cluster…



After	a	year,	still	no	good	answers!



BigDebug Project	Overview
BigDebug:	Debugging	Primitives	

for	Interactive	Big	Data	
Processing	in	Spark	

[ICSE	2016]

Simulated	Breakpoint
On-Demand	Watchpoint
Crash	Culprit	Remediation
Forward	Backward	Tracing

Titian:	Data	Provenance	for	Fine-
Grained	Tracing	
[PVLDB	2016]

Vega:	Incremental	Computation	for	
Interactive	Debugging	

[Under	Review]



Example	Query	Development	Session

• Dataset:	NYC	Open	Data	Project
– Calls	to	non-emergency	service	centers
– Dataset	contains	call	records	for	2010-2015
• Record	contents:	call	time,	agency,	caller	location,	etc.

• Query:	Identify	the	agencies	 that	received	the	
most	calls	during	busy	hours
– E.g.,	busy	hour	if	number	of	calls	>	10,000



Spark	Program

case	class	Calls(id:String,	hour:Int,	agency:String,...)
format	=	new	SimpleDateFormat("M/d/y	h:m:s	a")
input	=	sc.textFile("hdfs://...")
calls	=	input.map(_.split(","))

.map(r	=>	Calls(r(0),format.parse(r(1)).getHours,r(2),...)
calls.registerTempTable("calls")
hist =	sqlContext.sql("

SELECT	agency,	count(*)
FROM	calls
JOIN	(

SELECT	hour
FROM	calls
GROUP	BY	hour
HAVING	count(*)	>	100000
)	counts

ON	calls.hour =	counts.hour
GROUP	BY	agency")

hist.show()



Extract Dataset	from	HDFS
Transform it	into	a	DataFrame (i.e.,	table)
Load it	into	Spark	SQL

case	class	Calls(id:String,	hour:Int,	agency:String,...)
format	=	new	SimpleDateFormat("M/d/y	h:m:s	a")
input	=	sc.textFile("hdfs://...")
calls	=	input.map(_.split(","))

.map(r	=>	Calls(r(0),format.parse(r(1)).getHours,r(2),...)
calls.registerTempTable("calls")
hist =	sqlContext.sql("

SELECT	agency,	count(*)
FROM	calls
JOIN	(

SELECT	hour
FROM	calls
GROUP	BY	hour
HAVING	count(*)	>	100000
)	counts

ON	calls.hour =	counts.hour
GROUP	BY	agency")

hist.show()



Express	Query	in	Spark	SQL

case	class	Calls(id:String,	hour:Int,	agency:String,...)
format	=	new	SimpleDateFormat("M/d/y	h:m:s	a")
input	=	sc.textFile("hdfs://...")
calls	=	input.map(_.split(","))

.map(r	=>	Calls(r(0),format.parse(r(1)).getHours,r(2),...)
calls.registerTempTable("calls")
hist =	sqlContext.sql("

SELECT	agency,	count(*)
FROM	calls
JOIN	(

SELECT	hour
FROM	calls
GROUP	BY	hour
HAVING	count(*)	>	100000
)	counts

ON	calls.hour =	counts.hour
GROUP	BY	agency")

hist.show()

Identify	the	busy	hours	
i.e.,	#calls	>	10,000

Join	busy	hours	
with	calls	then	
group	by	agency	
and	count	the	
number	of	“calls”	
received	by	each	
agency



Debugging	Query	Results
• Analyst	observes	some	unexpected	results
– Agencies	that	should	not	appear	
• e.g.,	Brooklyn	Public	Library

– Expected	agencies	that	should	appear	
• e.g,	NYPD,	NYFD

• Titian	support	for	query	triage
– Analyst	can	trace	back	from	outlier	results	to	
contributing	data	at	some	intermediate	stage

– Analyst	can	execute	queries	against	intermediate	
data	leading	to	outlier	results



Query	Triage	with	Titian
• Intermediate	results	for	subquery
– Trace	back	to	subquery	and	show	distribution	of	calls	per	hour
– On	intermediate	data	leading	to	outlier	results

Significant	 skew	in	the	
midnight	 hour=0!

SELECT	hour,	count(*)
FROM	calls
GROUP	BY	hour



Identify	Bug	and	Revise	the	Query
• The	Bug

– System	assigns	default	value	hour=0	for…
– Calls	that	did	not	log	a	time

• Possible	course	of	action
– Filter	out	calls	assigned	to	hour=0

SELECT	agency,	count(*)
FROM	calls
JOIN	(

SELECT	hour
FROM	calls
WHERE	hour	!=	0
GROUP	BY	hour
HAVING	count(*)	>	100000
)	counts

ON	calls.hour =	counts.hour
GROUP	BY	agency

Introduce	predicate	that	filters	
out	midnight	 hour



Vega:	Re-execute	revised	Query
• Vega	materializes	intermediate	stage	results
– i.e.,	The	previous	subquery	result	is	saved

• Vega	Query	Rewriter	leverages	this	to	rewrite	
the	query	into…

SELECT	agency,	count(*)
FROM	calls
JOIN	counts
WHERE	counts.hour !=	0
ON	calls.hour =	counts.hour
GROUP	BY	agency

Materialized	result	from	
previous	execution
Rewrite	filter	to	remove	hour	0	
from	joining	 records



Vega:	Modified	Query	Evaluation
• Execute	an	incremental	join
– “Diff”	records	specify	changes	in	the	(join)	result
– For	this	example,	we	incrementally	remove	all	records	
for	hour	0	from	join	and	final	aggregation	results

• Vega	Optimizer	Results
Consequence:	over	an	order-of-
magnitude	runtime	improvement



• When	a	program	fails,	a	user	may	want	to	
investigate	a	subset	of	the	original	input	inducing	
a	crash,	a	failure,	or	a	wrong	outcome.	

• Delta	Debugging	[Zeller	1999]
–Well	known	debugging	algorithm	for	minimizing	
failure-inducing	inputs

– Requires	multiple	runs	to	isolate	failure-inducing	
inputs

Automated	Isolation	of	Failure-
Inducing	Inputs	for	Big	Data	Analytics	



First	we	run	the	test	to	find	the	failure	inducing	input	dataset	

Background:	Delta	Debugging
[Zeller,	FSE	1999]



Test	Fails

First,	we	run	the	test	to	find	the	failure	inducing	input	dataset	

Background:	Delta	Debugging
[Zeller,	FSE	1999]



Second,	we	split	the	failing	input	data		

Test	Fails Split	

Background:	Delta	Debugging
[Zeller,	FSE	1999]



Test	Fails Split	

Test	Passes

Test	Fails

Background:	Delta	Debugging
[Zeller,	FSE	1999]



Test	Fails Split	

Test	Passes

Test	Fails
Split	

Background:	Delta	Debugging
[Zeller,	FSE	1999]



Test	Fails Split	

Test	Passes

Test	Fails
Split	

…...

Background:	Delta	Debugging
[Zeller,	FSE	1999]



Scalable	Automated	Isolation	of	
Failure-Inducing	Inputs

• Leverage	data	provenance	to	reduce	search	space
– Avoid	costly	executions	on	data	not	relevant	to	the	bug

• Leverage	Vega	optimize	subsequent	runs.	

Delta	DebuggingTitian



Conclusion
• BigDebug Project
– Debugging	Primitives	for	Interactive	Big	Data	Processing	in	Apache	Spark
– https://sites.google.com/site/sparkbigdebug/

• Titian:	Interactive	Data	Provenance
– Supports	trace	back	queries	from	a	set	of	results
– Execution	replay	from	an	intermediate	point

• Vega:	Optimizing	modified	query	execution
– Novel	query	rewrite	mechanism	that	pushes	changes	backwards	to	save	work
– Incremental	evaluation	that	operates	on	data	changes	induced	by	query	
modifications


