
When Apache Spark Meets FPGAs:
A Case Study for Next-Generation DNA Sequencing Acceleration

Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei and Peng Wei

University of California, Los Angeles

2

We are forced to explore heterogeneity

Ø When Dennard scaling comes to the end and
Moore’s law slows down as components reach
atomic scale

§ Shift from single-core to multi-core

§ Take the pain to learn parallel programming
• Memory ordering, locking, load balancing, …

§ Even homogeneous multi-core architectures are not
able to drive continued perf. and energy improvement
that we have come to expect in the past

3

Heterogeneous Architecture

Ø Why heterogeneity?
§ Customized accelerators promise orders-of-

magnitude perf./watt gains

Ø Accelerator-centric architectures
§ Application-specific functional units

§ Domain-specific building blocks

§ Reconfigurable/reprogrammable logic
• GPUs, CGRAs, FPGAs, …

Source: Bob Broderson, Berkeley Wireless group

Tensor Processing Unit
Source: Google

GPGPU
Source: NVIDIA

FPGA
Source: Alpha Data

4

What is an FPGA?

Ø Field Programmable Gate Array (FPGA)
§ Reconfigurable hardware

§ Can be used to solve any problem which is
computable

• Not always fast, though

§ Is well-known to be used for ASIC
prototyping and hardware emulation

• Prototype accelerators

§ Can also be directly used as a compute
accelerator

Xilinx Virtex-7 FPGA
Source: Xilinx

Altera Stratix-10 FPGA
Source: Altera

http://www.slideshare.net/omutukuda/presentation-1993175

5

Ø FPGAs are reconfigurable
§ You do not want to be as extravagant as Google to tape-out an ASIC chip only for one app
§ Not many applications are so important as to be equipped with a customized chip

Ø FPGAs are energy-efficient
§ A high-end FPGA board typically consumes ~20 watt

Ø Concrete examples have demonstrated harnessing FPGAs in datacenter
§ Microsoft Catapult for the Bing search engine: 2x speedup with 10% more power consumption

Ø An FPGA fabric is (probably) going to be a “free lunch” in the near future
§ Altera, now part of Intel => An FPGA fabric will probably be a default component in a server

Ø CPU-FPGA systems are not fully elucidated
§ So many research opportunities, so much potential

Why FPGAs in datacenter?

6

Ø Accelerating an application that is a matter of life or death
§ DNA sequencing is expected to be widely used in precision medicine, like cancer treatment
§ A cancer cell’s genome mutates probably in a few days

§ The state-of-the-art sequencing pipeline typically takes a week or so to sequence a patient’s
genome, which, for clinic use, is too long

Ø Proposing an approach to efficient integration of FPGAs into Apache Spark
Ø Presenting what issues need to be addressed to operate FPGAs at scale
Ø Attracting more attention from system architects to make better CPU-FPGA

systems

The Objectives of This Case Study

7

Next-Generation DNA Sequencing

……
Fragmented into reads

Sequenced by chemical sequencer

Mapped by software aligner
INDEPENDENTLY

An individual’s genome samples

8

Ø Processing billions of reads (strings) independently
§ Fit the MapReduce programming model perfectly
§ As for the long reference genome? Spark’s broadcast variables

Ø Inside each read’s alignment process
§ Step #1: Seeding

• Exact string matching
• Linear time complexity

§ Step #2: Extending
• Approximate string matching
• The Smith-Waterman dynamic programming algorithm (Quadratic time complexity)
• Accelerated by FPGAs

The Solution: Heterogeneous Cluster Computing

9

Straightforward Integration: 1+1 < 0.001

The Spark Program
§ CS-BWAMEM [HitSeq `15]
§ Aligning billions of short reads onto the

reference human genome in parallel

The Accelerator [FCCM ̀ 15]
§ A throughput-oriented FPGA accelerator

for the Smith-Waterman DP kernel

9

The Straightforward JNI Integration
§ CPU: 2.1 x 103 reads per second
§ FPGA: 1.6 reads per second

AXI Interconnect Bus

FIFO FIFO FIFO……..
PE

1

PE Array M

Distributor
& Collector

BR
A

M

PE
2

PE
N

PE
1

PE Array 1

Distributor
& Collector

BR
A

M

PE
2

PE
N

PE
1

PE Array 2

Distributor
& Collector

BR
A

M

PE
2

PE
N

Controller
distributor & collector Batched Task BRAM

�256 bits

�256 bits �256 bits �256 bits

�32 bits

�4 bits

On CPU
One read

⇒ 24 DPs
⇒ 20 µs per DP
⇒ 2.1 x 103 reads/s

On CPU
One read

⇒ 24 DPs
⇒ 20 µs per DP
⇒ 2.1 x 103 reads/s

On FPGA
One DP

⇒ 25 ms data transfer
⇒ 1.6 reads/s

On FPGA
One DP

⇒ 25 ms data transfer
⇒ 1.6 reads/s

While JNI serves as a standard approach to connect JVMs with FPGAs,
a straightforward integration through JNI degrades the performance by 1000x.

While JNI serves as a standard approach to connect JVMs with FPGAs,
a straightforward integration through JNI degrades the performance by 1000x.

10

Ø Java Heap ó Native Memory

Ø Host Memory ó Device Memory

What happened in a CPU-FPGA communication instance?

Host Device

DataData

11

Ø Each map function is likely to
process only a small volume of
data with a small amount of
execution time

§ One read is only 101 ASCII characters
§ One line of a text file
§ One record of a NoSQL table
§ …

Ø Communication overhead can
be amortized by batch
processing

Why communication matters?
def map_func(input:U):V = {
// U => P => Q => V
t1:P = cnv1(input)
t2:Q = cnv2(t1)
t3:V = cnv3(t2)
t3

}
rdd_out = rdd_in.map(ele=>map_func(ele))

def map_func(input:Array[U]):Array[V] = {
// Array[U] => … => Array[V]
t1:Array[P] = cnv1_batch(input)
t2:Array[Q] = cnv2_batch(t1)
t3:Array[V] = cnv3_batch(t2)
t3

}
rdd_out = rdd_in.map(ele=>map_func(ele))

12

Let’s first do batch processing manually

CPU: 2.1

FPGA: 7.8

Read #3

Read #4

Read #5

Read #6

Read #2

Read #1

Batch
#1

Batch
#8

Batch
#4

Batch
#3

Batch
#6

Batch
#7

Batch
#2

Batch
#5

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#1

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#5

S-W
#6

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#5

S-W
#6

S-W
#1

S-W
#2

S-W
#3

S-W
#1

S-W
#2

S-W
#3

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#5

S-W
#6

S-W
#7

S-W
#8

S-W Batch

R
ea

d
B

at
ch

Dependency Chain of a
read’s S-W Tasks

Dependency/Irregularity-Aware Batch Processing

13

Accelerator-as-a-Service

Client RM
AM
NM

NM
Container
Container

Accelerator	status

GAM
NAM

NAM

FPGA

GPU

Global Accelerator Manager: accelerator-centric scheduling

Node Accelerator Manager:
local accelerator service management, JVM-to-ACC communication optimization

GAM

NAM

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

CPU: 137.0

FPGA: 362.5

14

Ø From homogeneous to heterogeneous => requirement of corresponding systems
§ lightweight, unified and efficient processor-accelerator communication

Ø While various FPGA-based accelerators have been proposed, CPU-FPGA
systems are being built on top of “naive” communication stack

§ Pageable memory => pinned memory => device memory

Ø MapReduce does not take accelerators into consideration, and does not seem to
be accelerator-friendly

§ A map function often has little execution time, but considerable aggregate time
§ It must be greatly helpful if automatic code transformation for batch processing works

Ø A generic accelerator-aware big-data framework is needed, even if not now

Lessons Learned and Open Discussion

15

Acknowledgement

16

THANKS FOR YOUR ATTENTION.

