<D

St Craar
When Apache Spark Meets FPGAs:

A Case Study for Next-Generation DNA Sequencing Acceleration

Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei and Peng Wei

University of California, Los Angeles

UC COMPUTER SCIENCE DEPARTMENT




We are forced to explore heterogeneity

> When Dennard scaling comes to the end and
Moore’s law slows down as components reach
atomic scale

= Shift from single-core to multi-core
= Take the pain to learn parallel programming
* Memory ordering, locking, load balancing, ...

= Even homogeneous multi-core architectures are not
able to drive continued perf. and energy improvement
that we have come to expect in the past
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Heterogeneous Architecture

> Why heterogeneity?

= Customized accelerators promise orders-of-
magnitude perf./watt gains
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> Accelerator-centricarchitectures
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= Application-specific functional units
= Domain-specific building blocks

= Reconfigurable/reprogrammable logic

* GPUs, CGRAs, FPGAs, ...

Tensor Processing Unit GPGPU FPGA
Source: Google Source: NVIDIA Source: Alpha Data



What is an FPGA?

> Field Programmable Gate Array (FPGA) ; "d"

= Reconfigurable hardware

Xilinx Virtex-7 FPGA
Source: Xilinx

= Can be used to solve any problem which is
computable

Altera Stratix-10 FPGA
Source: Altera

* Not always fast, though

= |s well-known to be used for ASIC
prototyping and hardware emulation
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* Prototypeaccelerators

= Can also be directly used as a compute
accelerator
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Why FPGAs in datacenter?

» FPGAs are reconfigurable
= You do not want to be as extravagant as Google to tape-out an ASIC chip only for one app
= Not many applications are so important as to be equipped with a customized chip

> FPGAs are energy-efficient
= A high-end FPGA board typically consumes ~20 watt

» Concrete examples have demonstrated harnessing FPGAs in datacenter

= Microsoft Catapult for the Bing search engine: 2x speedup with 10% more power consumption
> An FPGA fabricis (probably)going to be a “free lunch” in the near future

= Altera, now part of Intel => An FPGA fabric will probably be a default component in a server

» CPU-FPGA systems are not fully elucidated
= So many research opportunities, so much potential



The Objectives of This Case Study

» Accelerating an applicationthatis a matter of life or death
= DNA sequencing is expected to be widely used in precision medicine, like cancer treatment
= A cancer cell’s genome mutates probably in a few days

= The state-of-the-art sequencing pipeline typically takes a week or so to sequence a patient’s
genome, which, for clinic use, is too long

» Proposing an approachto efficientintegration of FPGAs into Apache Spark
> Presentingwhatissues need to be addressed to operate FPGAs at scale

> Attracting more attention from systemarchitects to make better CPU-FPGA
systems



Next-Generation DNA Sequencing

An individual’s genome samples = - - - -

‘ Mapped by software aligner
INDEPENDENTLY




The Solution: Heterogeneous Cluster Computing

» Processing billions of reads (strings) independently
= Fit the MapReduce programming model perfectly
= As for the long reference genome? Spark’s broadcast variables

> Inside eachread’s alignment process

= Step #1: Seeding
* Exact string matching
* Lineartime complexity

= Step #2: Extending
* Approximate string matching
* The Smith-Waterman dynamic programming algorithm (Quadratic time complexity)
* Accelerated by FPGAs



Straightforward Integration: 1+1< 0.001

The Spark Program
= CS-BWAMEM |[HitSeq “15]

= Aligning billions of short reads onto the
reference human genome in parallel

The Accelerator [FCCM "15]

= A throughput-oriented FPGA accelerator
for the Smith-Waterman DP kernel

The Straightforward JNI Integration
= CPU: 2.1x 103 reads per second
* FPGA: 1.6 reads per second
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One DP
= 25 ms data transfer

= 1.6 reads/s
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While JNI serves as a standard approach to connect JVMs with FPGAs,

a straightforward integration through JNI degrades the performance by 1000x.




What happened in a CPU-FPGA communication instance?

> JavaHeap <& Native Memory

> Host Memory <~ Device Memory
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Why communication matters?

def map_func(input:U):V = {

// U =>P =>0Q =>V
process only a small volume of t1

» Each map functionis likely to

:P = cnvl(input)
data with a small amount of t2:Q = cnv2(tl)
execution time Siv = cnv3(t2)
= One read is only 101 ASCII characters | ,
= One line of a text file rdd_out = rdd_in.map(ele=>map_func(ele))
= One record of a NoSQL table def map_func(input:Array[U]) :Array[V] = {

// Array[U]
tl:Array[P]

> .. => Array[V]
cnvl batch(input)

> Communication overheadcan tgtﬁrray[\?] = cnvg_gatcg(t;)
i ; = tch(t
be amortized by batch E3 rray[V] = cnv3_batch(t2)

processing )
rdd _out = rdd_in.map(ele=>map_func(ele))
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Let’s first do batch processing manually
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Accelerator-as-a-Service
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Lessons Learned and Open Discussion

» Fromhomogeneousto heterogeneous =>requirement of corresponding systems
= lightweight, unified and efficient processor-accelerator communication

» While various FPGA-based accelerators have been proposed, CPU-FPGA
systems are being built on top of “naive” communication stack
= Pageable memory => pinned memory => device memory

> MapReduce does not take acceleratorsinto consideration, and does not seem to
be accelerator-friendly

= A map function often has little execution time, but considerable aggregate time
= |t must be greatly helpful if automatic code transformation for batch processing works

> A genericaccelerator-aware big-data framework is needed, even if not now
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