
Low-Profile Source-side Deduplication

for Virtual Machine Backup

Daniel Agun, Tao Yang

University of California at Santa Barbara

Wei Zhang

Pure Storage

Cloud Platform and VM Snapshot Backup

 Public and private IaaS cloud systems have become

industry standard

 Frequent virtual machine snapshot backups improves

system reliability

 Backup traffic of VM snapshots with limited source-

side deduplication is huge.

 100,000VMs with 76% dirty bit detection still requires ~1

petabyte of networking with 40GB per VM snapshot

Objective: Aggressive Source-Side Deduplication

With low-profile computing

 Backup data daily for tens of thousand VMs within a few hours

each day.

 Minimize network traffic via aggressive source-side

deduplication

 State-of-art deduplication algorithms are memory/compute-

intensive

 Resource friendly – small memory footprint and CPU usage,

minimum impact to primaryservices

Backup

Cloud service

Strategies for Scalable/Low-cost Aggressive

Source-Side Deduplication

 Focus on popular data chunks shared among snapshots

 Zipf distribution. Top 2-4% of most popular items

(plus inner-VM dedup) accomplishes ~98%

deduplication efficiency.

 Cluster-based deduplication

 Distribute VM chunk signatures to cluster machines

 Minimize job completion time instead of individual

chunk backup time.

 Approximated snapshot deletion

VM snapshot chunk index

Example datasets

from Alibaba.

Left: 4200 VMs with

max/average VM size= 20.

Right 8000 VMs with max/avg=45

Low-cost source-side cluster-based deduplication

 Given a set of VMs to be backed up, find if their block

signatures are duplicates of the existing snapshot blocks.

 Challenge in control buffer size during data shuffling

 Complicated by uneven VM size distribution.

buffer

buffer

Multi-round Collaborative Deduplication

 Major stages of each duplicate detection round

 k rounds

Stage 1: Collect fingerprints in parallel

Stage 2: Detect duplicates in parallel

Stage 3: Perform actual VM backup in parallel

 k too small – more

buffering needed

 k too large – more

dedup overhead

Choose k so that

buffer memory ≤ 100MB

How many rounds of backup batches?

• Estimate # of rounds k based on memory usage per node

• p is the number of physical machines.

• V is number of VMs hosted per machine

• q is the number of fingerprint partitions per machine

• D is size of modified data per VM

• μ is percentage of unique chunks among dirty data

accumulated

• b is the average number of snapshot versions per VM.

• r is the ratio of chunk size over index entry size

p=100, V=25, D=8.8GB, μ =22.8%, b=10, r=136, q=400

k=12. 9% of VMs is handled per batch

≤100MB

Low-cost Design for Snapshot Deletion

 Snapshot deletion is as frequent as creation

 Identifying unused chunks with reference counting is

costly

 Grouped Mark-and-sweep [Guo et. al , ATC’11]: A block

can be deleted if its reference count is zero

 Our approximate approach

 Separate strategies for popular chunks (2-4%) and non-

popular inner VM chunks.

 Approximate deletion for VM-specific chunks with

bloom filter

Snapshots Snapshots Snapshots

 Summary vector to detect the usage of a chunk within a VM.

 Use bloom filter to summarize snapshots of VM

– Summary vectors of live snapshots represent the chunks in use

 Checking the existence of a chunk reference is fast

– Tolerate small percentage of storage leak to allow fast deletion with

approximation

Approximate Deletion for VM-specific chunks

Snapshots

How often to repair leakage?

Leakage Analysis: How Often to Repair?

• Periodically repair with mark-and-sweep to remove false

negatives (those with 0 reference, but not removed)

• u : the initial size of a snapshot

• ∆u: average VM change between consecutive snapshots.

• Total chunks stored after h snapshots per VM:

 U=u+(h-1) ∆u

• Total leakage after R rounds: L=R ε∆u

ε is the misjudgement rate of bloom-filter summary vector

• How often to repair?

With daily backup, ∆u/u=2.5%, h=10, t=0.1,  R=19.6 days

Evaluation

 Prototype implementation in C. Evaluated on a Linux cluster of

8-core 3.1 GHz, AMD FX-8120. 16GB memory

 Test data from Alibaba Aliyuan cloud

 41TB. 10 snapshots per VM for 2500 VMs

 Segment size: 2MB. Avg. chunk size: 4KB.

SHA-1 fingerprint hash.

 Evaluation objectives

 Compare resource usage of three source-side

deduplication methods: 1) dirty bit. 2) Synchronous

method. 2) Collaborative multi-round with k=12.

 Impact of multi-round scheduling on backup job span

 Compare exact deletion with approximate deletion on

resource usage, time, and space leakage.

Data Characteristics

 Each VM uses 40GB storage space on average

 OS and user data disks: each takes ~50% of space

 OS data : Debian, Ubuntu, Redhat, CentOS, Win2003

32bit, win2003 64 bit and win2008 64 bit.

 Zipf-like distribution of VM OS/user data:

 frequency of any chunk is inversely proportional to its

rank in the frequency table

Resource Comparison

 Resource usage comparison per snapshot.

 Local disk IO and memory costs are per machine.

 Storage and network cost are for 100 physical machines after

deduplication.

Aggressive source-side deduplication incurs 4.55x less space and

4x less network traffic

Job time comparison

 Job span in hours (total time for backup of all VM snapshots)

 Average per-VM backup time

 Even VM size distribution vs skewed distribution with

max/average size=20.

Multiround collaborative processing with k=12

is 21x faster than synchronous method for job span.

1.88x slower than dirty bit method but still finishes in 2.36 hours.

Effectiveness of Approximate Deletion

 Processing time and per-machine memory usage of four

deletion methods.

 # of machines: p= 50 and 100 while # of VMs per machine=25

•Approximate deletion is 3114x faster than the grouped

mark&sweep method.

•Leakage repair is 53x faster with 35% to 96% less memory usage

Contributions & Conclusions

 Scalable low-profile multi-round source-side deduplication for

frequent VM snapshot backup.

 For the tested dataset,

 Network cost: 4x and storage cost is reduced by 4.55x

compared to a dirty-bit based method.

 Multi-round deduplication is an order of magnitude faster

than a synchronous scheme in dealing a skewed load.

 Approximate snapshot deletion only requires 15MB per

machine

– 3114x faster than the grouped mark&sweep method.

– Leakage repair is 53x faster with 35% to 96% less memory

usage.

Thank You!

Questions?

