
To Zip or not to Zip –
Effective Resource Usage for
Real-Time Compression
Danny Harnik, Oded Margalit, Ronen Kat, Dmitry Sotnikov, Avishay Traeger
IBM Research - Haifa

2

Our scope – Real-Time Compression

 Compression for primary data in enterprise storage systems
 Many benefits to compression. Reduces:

– Costs
– Rack space
– Cooling
– Can delay need for additional purchases to existing systems

 The challenge: Add “seamless” compression to a storage system
 with little effect on performance

A bit about compression techniques:
 We focused on Zlib – a popular compression engine (zip). Combines :

– Lempel Ziv [LZ77] compression – pointers instead of repetitions
– Huffman Encoding – use shorter encoding to popular characters

3

Estimating compression ratios – some motivation

 To Zip or not to Zip?
–Compression does not come for free
–Incurs overheads, sometimes significant
–Not always worth the effort – depends on the actual data
–Goal: Avoid compressing “incompressible” data

Other potential benefits:
 Evaluation and sizing

–Compression ratio  number of disks  money!
–Evaluation: should I invest in a storage system with compression
–Sizing: How many disks should I buy

Especially In a storage
system with a high disk to

server ratio

4

Existing solutions

Rules of thumb
 Deduce from past experience with similar applications
 By file extension

– Not always accurate
– Not always available

Look at the actual data

 Scan and compress everything
– Takes too long

 Look at a prefix (of a file/chunk) and deduce about the rest
– No guarantees on the outcome

 No established method for estimating compression ratio other than compressing
 Raskhodnikova et al. [RRRS 2007] – Cannot accurately estimate LZ77

compression without reading essentially all of the data!

.jpg
.doc

.ppt
.vmdk

.zip

5

Macro scale

 Large volumes
– GigaBytes, TeraBytes
– Time to compress is large (hours)
– Estimation can run a short time

(minutes)
– Can obtain accuracy guarantees

 Good for:
– Avoiding compression (and associated

overheads) for incompressible
volumes.

– Evaluation and sizing

Micro scale

 Single write
– KiloBytes
– Time to compress is small

(miliseconds)
– Estimation has to be ultra quick
– Heuristic

 Good for:
– On the fly decisions
– No prior information about the data
– Data with varying compression ratio

Our Work Two granularities–

6

 Input: Large volume of data
– Block volume, file system, etc..

 Goal: Estimate the overall compression ratio with accuracy guarantee.

Part I The Macro–

The framework:
 Choose m random locations
 Compute an average of the

compression ratio of these locations

 What is “location”?
 What is “compression ratio of a

location”?
 How do we get a guarantee?

Input

7

The Macro-scale – what to sample?

 Solution is straightforward if compression is
done independently on fixed size chuncks

– Uniformly sample input chuncks

 But in general this is not the case
– For example, Zlib can output one zip file for

very large files/volumes.

 What about the impossibility result for LZ77?
– [RRRS07]…

 “In theory, theory and practice are the same.
In practice, they are not…”

– Albert Einstein

Input Output

Input

8

The Macro-scale – what to sample?

 Real life implementations of compression
algorithms are subject to “locality limits”

– Don’t want to hold long back pointers
– Memory management, need to flush their

buffers

 We sample single bytes
 Define the contribution of a byte as the

compression ratio of its locality

 Analysis sketch:
– Prove that the overall ratio is an average

of the contributions of all bytes in the input
– Use known statistical analysis for

estimating averages via sampling.

Input Output

9

The Macro-scale – Sample size and accuracy

Analysis yields:

Confidence ≤ 2e-2m·Accuracy

 Accuracy is a bound on the additive error
 Plug desired confidence and accuracy into

equation to get the required sample size
 Sample size independent of Volume size!

 Results of an estimator run are normally
distributed around the actual compression
ratio

 Width of Gaussian dictated by sample size.

10

The Macro-scale – the Actual Tool

 Written in C
 Multi-threaded

 Two implementations:
1. IBM Real-Time compression
2. Zlib compression on full objects

 Tested on real life data
 Example of a run: 73 seconds on a 3.2 TB volume – Error ~0.5%

– Exhaustive run took almost 4 hours

 IBM Comprestimator – the macro-scale for IBM Real-time compression
on Storewize V7000 and SAN Volume controller: Downloadable at:

 http://www-01.ibm.com/support/docview.wss?uid=ssg1S4001012

11

 Input: A single write
– For example: 8KB, 16KB, 32KB, 128KB

 Goal: Quickly recommend to zip or not to zip.
– Has to be much faster than actual compression!

• Don’t want to read the entire chunk
• Impossible to get guarantees – locality is the entire chunk

Part II The Micro–

Option 1: Prefix estimation
 Start compressing the input chunk and stop early

– E.g., in a 8KB chunk stop after 1KB
 Evaluate compression ratio thus far:

– Compressed well  Continue
– Incompressible  abort and copy the uncompressed chunk

 Good for compressible data – zero overhead 
– Not so much for incompressible data… 

 Problematic for data that changes in the middle 
– E.g. A text document with an embedded photo

12

Option 2: The Heuristics Method

 Collect a set of basic indicators about
the chunk

 Based on the indicators make one of
3 recommendations on the chunk:
1. Don’t compress
2. Compress
3. Huffman - Skip the LZ compression

and use only Huffman encoding

 Indicators
– Core-set size – The character set that

makes up most of the data
– Byte-Entropy
– Symbol-pairs distribution indicator

13

Heuristics Method: Speeding it up

Employed a number of techniques to improve performance:

 Sampling
– Indicators are computed on a sample of the data

 Adaptive sampling
– Add more samples until the desired statistical significance is reached.

 Lazy evaluation
– Calculate the heuristics sequentially, in progressing order of difficulty (light to heavy)

• Attempt to reach a decision as early as possible

14

Evaluation

 Time vs. compression trade-off:
– For example, on real life data with 32KB writes, the methods exhibit:

• Prefix: 74% CPU utilization at the price 2.2% capacity increase
• Heuristics: 65% CPU utilization at the price 2.3% capacity increase

 Running time: of heuristics,
prefix and full compression

 Measured on a benchmark
collection of real life data
– Tested on mixed data types
– Over 300 GB
– 17790 files

15

Putting it all together

Use an a combination of the different methods:
 Whenever applicable – use the macro-scale
 After this, the operation mode depends on the observed data:
 compressible: incompressible:

 When most (or all) is compressible
 use prefix estimation

 When significant percent is incompressible
 use heuristics method

 When most is incompressible
 Turn compression off, run
macro-scale off-line to detect if a
change in tendencies occured

16

Thank You !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

