
To Zip or not to Zip –
Effective Resource Usage for
Real-Time Compression
Danny Harnik, Oded Margalit, Ronen Kat, Dmitry Sotnikov, Avishay Traeger
IBM Research - Haifa

2

Our scope – Real-Time Compression

 Compression for primary data in enterprise storage systems
 Many benefits to compression. Reduces:

– Costs
– Rack space
– Cooling
– Can delay need for additional purchases to existing systems

 The challenge: Add “seamless” compression to a storage system
 with little effect on performance

A bit about compression techniques:
 We focused on Zlib – a popular compression engine (zip). Combines :

– Lempel Ziv [LZ77] compression – pointers instead of repetitions
– Huffman Encoding – use shorter encoding to popular characters

3

Estimating compression ratios – some motivation

 To Zip or not to Zip?
–Compression does not come for free
–Incurs overheads, sometimes significant
–Not always worth the effort – depends on the actual data
–Goal: Avoid compressing “incompressible” data

Other potential benefits:
 Evaluation and sizing

–Compression ratio number of disks money!
–Evaluation: should I invest in a storage system with compression
–Sizing: How many disks should I buy

Especially In a storage
system with a high disk to

server ratio

4

Existing solutions

Rules of thumb
 Deduce from past experience with similar applications
 By file extension

– Not always accurate
– Not always available

Look at the actual data

 Scan and compress everything
– Takes too long

 Look at a prefix (of a file/chunk) and deduce about the rest
– No guarantees on the outcome

 No established method for estimating compression ratio other than compressing
 Raskhodnikova et al. [RRRS 2007] – Cannot accurately estimate LZ77

compression without reading essentially all of the data!

.jpg
.doc

.ppt
.vmdk

.zip

5

Macro scale

 Large volumes
– GigaBytes, TeraBytes
– Time to compress is large (hours)
– Estimation can run a short time

(minutes)
– Can obtain accuracy guarantees

 Good for:
– Avoiding compression (and associated

overheads) for incompressible
volumes.

– Evaluation and sizing

Micro scale

 Single write
– KiloBytes
– Time to compress is small

(miliseconds)
– Estimation has to be ultra quick
– Heuristic

 Good for:
– On the fly decisions
– No prior information about the data
– Data with varying compression ratio

Our Work Two granularities–

6

 Input: Large volume of data
– Block volume, file system, etc..

 Goal: Estimate the overall compression ratio with accuracy guarantee.

Part I The Macro–

The framework:
 Choose m random locations
 Compute an average of the

compression ratio of these locations

 What is “location”?
 What is “compression ratio of a

location”?
 How do we get a guarantee?

Input

7

The Macro-scale – what to sample?

 Solution is straightforward if compression is
done independently on fixed size chuncks

– Uniformly sample input chuncks

 But in general this is not the case
– For example, Zlib can output one zip file for

very large files/volumes.

 What about the impossibility result for LZ77?
– [RRRS07]…

 “In theory, theory and practice are the same.
In practice, they are not…”

– Albert Einstein

Input Output

Input

8

The Macro-scale – what to sample?

 Real life implementations of compression
algorithms are subject to “locality limits”

– Don’t want to hold long back pointers
– Memory management, need to flush their

buffers

 We sample single bytes
 Define the contribution of a byte as the

compression ratio of its locality

 Analysis sketch:
– Prove that the overall ratio is an average

of the contributions of all bytes in the input
– Use known statistical analysis for

estimating averages via sampling.

Input Output

9

The Macro-scale – Sample size and accuracy

Analysis yields:

Confidence ≤ 2e-2m·Accuracy

 Accuracy is a bound on the additive error
 Plug desired confidence and accuracy into

equation to get the required sample size
 Sample size independent of Volume size!

 Results of an estimator run are normally
distributed around the actual compression
ratio

 Width of Gaussian dictated by sample size.

10

The Macro-scale – the Actual Tool

 Written in C
 Multi-threaded

 Two implementations:
1. IBM Real-Time compression
2. Zlib compression on full objects

 Tested on real life data
 Example of a run: 73 seconds on a 3.2 TB volume – Error ~0.5%

– Exhaustive run took almost 4 hours

 IBM Comprestimator – the macro-scale for IBM Real-time compression
on Storewize V7000 and SAN Volume controller: Downloadable at:

 http://www-01.ibm.com/support/docview.wss?uid=ssg1S4001012

11

 Input: A single write
– For example: 8KB, 16KB, 32KB, 128KB

 Goal: Quickly recommend to zip or not to zip.
– Has to be much faster than actual compression!

• Don’t want to read the entire chunk
• Impossible to get guarantees – locality is the entire chunk

Part II The Micro–

Option 1: Prefix estimation
 Start compressing the input chunk and stop early

– E.g., in a 8KB chunk stop after 1KB
 Evaluate compression ratio thus far:

– Compressed well Continue
– Incompressible abort and copy the uncompressed chunk

 Good for compressible data – zero overhead
– Not so much for incompressible data…

 Problematic for data that changes in the middle
– E.g. A text document with an embedded photo

12

Option 2: The Heuristics Method

 Collect a set of basic indicators about
the chunk

 Based on the indicators make one of
3 recommendations on the chunk:
1. Don’t compress
2. Compress
3. Huffman - Skip the LZ compression

and use only Huffman encoding

 Indicators
– Core-set size – The character set that

makes up most of the data
– Byte-Entropy
– Symbol-pairs distribution indicator

13

Heuristics Method: Speeding it up

Employed a number of techniques to improve performance:

 Sampling
– Indicators are computed on a sample of the data

 Adaptive sampling
– Add more samples until the desired statistical significance is reached.

 Lazy evaluation
– Calculate the heuristics sequentially, in progressing order of difficulty (light to heavy)

• Attempt to reach a decision as early as possible

14

Evaluation

 Time vs. compression trade-off:
– For example, on real life data with 32KB writes, the methods exhibit:

• Prefix: 74% CPU utilization at the price 2.2% capacity increase
• Heuristics: 65% CPU utilization at the price 2.3% capacity increase

 Running time: of heuristics,
prefix and full compression

 Measured on a benchmark
collection of real life data
– Tested on mixed data types
– Over 300 GB
– 17790 files

15

Putting it all together

Use an a combination of the different methods:
 Whenever applicable – use the macro-scale
 After this, the operation mode depends on the observed data:
 compressible: incompressible:

 When most (or all) is compressible
 use prefix estimation

 When significant percent is incompressible
 use heuristics method

 When most is incompressible
 Turn compression off, run
macro-scale off-line to detect if a
change in tendencies occured

16

Thank You !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

