=

Dowsing for overflows:
a guided fuzzer to find buffer boundary violations

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner,
Herbert Bos

Usenix Security 2013
August 14, 2013

1/22



Introduction
©0000

Bugs, bugs everywhere

e Buffer overflows still represent a top 3 threat (after 40 years)

Applications grow at a rapid pace, testing cannot keep up

@ Containment of software faults?

Solve the root cause via automated testing!

=

2/22



Introduction
00000

Possibility of automated testing

Static analysis

@ Deployed in practice
o Difficult to make path-sensitive and inter-procedural
@ Lack of accuracy makes for many FPs/FNs

Symbolic execution

Observations only relevant for given execution path

Core focus is on input generation

Goal is to achieve significant code coverage

Exponential in nature (input/code)

N

=

3/22



Introduction
00000

Testing model

@ Search for buffer overflows
e Dowser focuses on complex loops

o Other approaches for simple pointer computation
@ Source code available: Typical in testing

@ Existing test inputs to reach every complex loop

rije Universiteit

4/22



Introduction
0000

Example

@ Nginx web server, buffer overflow in URI parser
@ Application too complex for traditional tools

@ Complete code coverage may not even the trigger bug!

while (p <= r->uri_end) // >300 lines of code
switch (state)

case sw_usual: *u++
case sw_slash: *u++

ch;
ch;

case sw_dot: *u++ = ch;
if (ch == "/’) u--;
case sw_dot_dot: *u++ = ch;
if (ch == "/’) u -= 4;

=

5/22



Introduction
0000e

Testing with Dowser

@ Objective: focus the testing effort around specific
high-priority code fragments

@ Spot-checking instead of looking at general picture
@ Builds on symbolic execution, guided by in-depth analysis

@ End-to-end solution starting from source-code:

IPartA PartB PartCI |PartA XXXX = PartC

O -

rije Universiteit  amsterdam 6/22




Dowsing
000

Dowsing

Identify and rank loops based on bug probability

7/22



Dowsing
oe0

Dowsing in a nutshell

@ Static analysis during compilation process
@ Search for loops containing pointer dereference

@ Analyze data-flow graph to infer complexity measure

=

8/22



Dowsing
ooe

Applied to real software

@ Compare the ranking efficiency of the proposed heuristic to
instruction counting and random order

o Buffer overflows reported in CVE for: nginx, ffmpeg,
inspircd, libexif, poppler, snort, sendmail

— Dowser
2 - - Count
100 4 Random —
el  __———T------TITT
©
(2]
(=]
2
o
kS
S
T T T
60 80 100
% % of analysis groups analyzed
o

rije Universiteit

9/22



Input reduction
0000

Input tracking

Only sub-set of input is relevant for spot-checking
Infer relationships between inputs and candidate loops

PartA = PartB  PartC
a1

i

O

=

10/22



Input reduction
0000

Example input: HTTP Request

Long input with multiple tokens.

GET /long/path/file HTTP/1.1

Host: thisisthehost.com

Content-Type: application /x-www-form-urlencoded
Content-Length: 1337

=

11/22



Input reduction
0000

Highlight of HTTP Request

Only small part influences given loop

GET /long/path/file HTTP/1.1

Host: thisisthehost.com

Content-Type: application /x-www-form-urlencoded
Content-Length: 1337

@ Dynamic information flow tracking
@ Track the influence of input on variables
@ Can be performed at different granularities (details in paper)

rije Universiteit

12/22



Input reduction
oooe

Benefits of input reduction

@ Symbolic execution is input driven in nature

@ Provides implicit fine-grained modularization

@ Enables symbolic execution for applications with large input

e Conversion table in movie file for ffmpeg
e Font description in PDF file for poppler

=

13/22



Code reduction
©000000

Bug search

Guide symbolic execution towards potential bug

|PartA XXXX  PartC

O

®

ife Universiteit  amsterdam 14 /22



Code reduction
0®00000

Basics of symbolic execution

"White-box fuzzing”

@ Avoid generating input that replicates execution path

Run-time feed-back about possible execution paths

Aimed at test-case generation

-

=

15/22



Code reduction
00®0000

Snippet of symbolic execution

Constraint solver used to check for possible divergence

if (@ <4)
do_something1;

else
do_something2;

if (@<2)
do_something3;
else

do_something4; Input: 1 3 5

=

16 /22



Code reduction
000@000

Analyzing symbolic execution

@ In practice input reduction was found to be insufficient

@ Large number of conditional branches still to be covered

Only some conditional statements are relevant

if (a[i] == ’A’)
printf(...);

@ Focus on the branches influencing pointer value

@ Value Coverage search strategy

rije Universiteit

17/22



Code reduction

[e]e]e]e] lele)

Value Coverage vs traditional search strategies

=

900

800
2 700
600
£ 500
£ 400
£ 300
(§ 200

100

e (seconds

Depth First Search ——
Code Coverage -
Value Coverage -«

20 30 40
Symbolic Input Bytes

18/22



Code reduction
000000

Details behind Value Coverage Search

@ Only some execution paths are relevant to pointer arithmetic
@ Learn the general behavior of conditionals using small inputs
@ Result: 66% of conditionals eliminated

@ Influence on example:

while (p <= r->uri_end)
switch (state)
case sw_usual: *u++ = ch;
case sw_slash: *u++ = ch;
case sw_dot: *u++ = ch;
if (ch == "/") u--;
case sw_dot_dot: *u++ = ch;
if (ch =="/") u -= 4;

=

19/22



Code reduction
0000000

Details behind Value Coverage Search

=

@ Only some execution paths are relevant to pointer arithmetic
@ Learn the general behavior of conditionals using small inputs
@ Result: 66% of conditionals eliminated

@ Influence on example:

while (p <= r->uri_end)
switch (state)
case sw_usual: *u++ = ch;

case sw_dot:

case sw_dot_dot:

20/22



Summary
[1e]

Evaluation

Program LoC Symbolic Symbolic execution

Input Symbex M-Symbex Dowser
nginx 0.6.32 66k URI field >8h >8h 253 sec
ffmpeg 0.5 300k Huffman table >8h >8h 48 sec
inspircd 1.1.22 | 45k DNS response 200 sec 200 sec 32 sec
poppler 0.15.0 | 120k JPEG image >8h >8h 14 sec
poppler 0.15.0 | 120k | Embedded font >8h >8h 762 sec
libexif 0.6.20 10k | EXIF tag/length >8h 652 sec 652 sec
libexif 0.6.20 10k | EXIF tag/length >8h 347 sec 347 sec
libexif 0.6.20 10k | EXIF tag/length > 8 h 277 sec 277 sec
snort 2.4.0 75k UDP packet >8h >8h 617 sec

Table: Bugs detected with Dowser.

®

Jie Universiteit amsterdan 21/22



Summary
oe

Conclusions

End-to-end solution for guided symbolic execution

The spot-check approach enables focused search

Built-in prioritization mechanism to optimize testing effort

Heuristics geared towards buffer overflow type bugs

Dowser shows scalability beyond traditional tools

=

22/22



	Introduction
	Overview

	Dowsing
	Overview

	Input reduction
	Overview

	Code reduction
	Overview

	Summary
	Overview


