
LOUP: The Principles and Practice of 

Intra-Domain Route Dissemination 
Nikola Gvozdiev, Brad Karp, Mark Handley



The Rising Tide of Reachability Expectations

Internet users expect any-to-any reachability:

• Reliable transport masks losses caused by congestion

• Routing system adapts after topology changes

Loss under congestion and unreachability during routing 

convergence interrupt end-to-end connectivity

“Legacy” applications (e.g., file transfer, email) handle 

interruptions in connectivity well

Increasingly, applications are intolerant of brief interruptions in 

reachability:

VoIP, interactive gaming, high-frequency trading, …



Routing a Major Source of Transient Unreachability

How can we make the routing system better support

interruption-intolerant applications?

“VoIP usability is hindered as much by BGP's slow 

convergence as network congestion” [Kushman et al. 2007]

“Routing failures contribute to end-to-end packet loss 

significantly ... common iBGP configuration and MRAI timer 

values play a major role in causing packet loss during routing 

events.” [Wang et al. 2006]



The big picture

eBGP – external BGP



The big picture



The big picture

Border Router



The big picture

Border Router



The missing iBGP piece

Previous work has looked into

• the interior gateway protocol 

• eBGP reliability, scalability and configuration

• reachability during eBGP convergence

• iBGP reliability, scalability and configuration

Fundamental behavior of intra-AS route propagation unexamined

[Caesar 2005], [Feamster 2005], [Bonaventure 2004], [Griffin 2002], [Gao 2001]

[Van Beijnum 2009], [John 2008], [Pei 2004], [Barr 2003]

[Bonaventure 2007], [Chandrashekar 2005], [Wu 2005], [Feamster 2004]

[Francois 2007], [Shaikh 2006], [Wu 2005], [Garcia-Luna-Aceves 1993]

• reachability during iBGP convergence ?



Full-mesh iBGP



Full-mesh iBGP



Full-mesh iBGP

• Very poor scalability

• Rarely used



Route reflectors



Route reflectors

Route Reflector

Route Reflector



Route Reflector

Route reflectors

Route Reflector

• Error-prone configuration [Griffin et al. 2002]

• Does not achieve the same convergence as full-mesh



How does iBGP go wrong?



iBGP update causes transient loops

BR BR



BR BR

iBGP update causes transient loops



Router 0 receives a better alternative and switches

Router 0 sends messages to update all other routers

iBGP update causes transient loops



Router 0 receives a better alternative and switches

Router 0 sends messages to update all other routers

iBGP update causes transient loops



Router 1 is slow to process the message or 0-1 is congested

Loops due to lack of ordering between sessions

Loop

iBGP update causes transient loops



Why bother?

These loops surely are very transient. After all links in the core 

are very fast and control traffic is prioritized. 

No. The control plane is a lot slower than the forwarding plane.

BGP processing delays can be 100s of ms [Feldmann et al. 2004].



The collateral damage of routing loops

When a loop occurs if the link is busy all flows will experience 

loss.

Flow A

Flow A

Flow B

Queues overflow, drops 

for both A and B 

These loops not hypothetical. 

Observed in practice [Hengartner 2002].



SOUP and LOUP

In this talk we propose 2 iBGP replacements:

• SOUP (Simple Ordered Update Protocol)

• LOUP (Link-Ordered Update Protocol)

SOUP - provably loop-free, but converges slowly in some cases

LOUP - converges faster, but can loop in rare occasions



Ordering the application of updates avoids loops

We want to enforce ordering to the application of updates



• Single-hop sessions between neighbors

• Only forward an update that you have processed

• Flood updates to propagate a “wavefront”

We want to enforce ordering to the application of updates

Ordering the application of updates avoids loops



SOUP ingredients

Wavefront propagation

• Basic ordering of updates

Reverse Forwarding Tree (RFT) and Forward Activation (FA)

• New / improving routes

Reverse Activation (RA)

• Worsening routes / withdrawals

RA -> FA switch

• Multiple alternatives propagating simultaneously

• Complete loop freedom



What about more complex topologies?



Flooding a wavefront is insufficient

(1,3) has a high metric

Same setup, one more link



Router 0’s update is forwarded by 1 to both 2 and 3

Flooding a wavefront is insufficient

(1,3) has a high metric



Router 0’s update is forwarded by 1 to both 2 and 3

Flooding a wavefront is insufficient

(1,3) has a high metric



Loop due to 0’s update reaching 3 before 2

Even though (1,3) is not on anyone’s forwarding path

Loop

Flooding a wavefront is insufficient

(1,3) has a high metric



Why did it loop?

• Only one prefix

• Initially only one route via B



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

Why did it loop?



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

Why did it loop?



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

• Routers switch to A

Forwarding paths to A

Why did it loop?



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

• Routers switch to A

Forwarding paths to A

Why did it loop?



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

• Routers switch to A

Forwarding paths to A

X

Y

X cannot reach A. 

Y will forward back to X

Why did it loop?



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

• Routers switch to A

Forwarding paths to A

X

Y

X cannot reach A. 

Y will forward back to X

Why did it loop?



• Only one prefix

• Initially only one route via B

• New better alternative at A

• Propagates as a wavefront

Update from A

• Routers switch to A

Loops
Need to ensure that at any time 

along any forwarding path there is 

only one switch of route.

• Flooding not ordered

• Loops can form

Forwarding paths to A

Why did it loop?



To avoid loops, propagate over the concatenation 

of the forwarding paths to the BR.

Reverse Forwarding Tree propagation avoids loops



SOUP ingredients

Wavefront propagation

• Basic ordering of updates

Reverse Forwarding Tree (RFT) and Forward Activation (FA)

• New / improving routes

Reverse Activation (RA)

• Worsening routes / withdrawals

RA -> FA switch

• Multiple alternatives propagating simultaneously

• Complete loop freedom



What about withdrawals and routes 

worsening?



Immediate application of withdrawals causes loops

10 has sent R1

0 has sent R2 == R1

AS is split in half. 

Setup common with peering.



10 withdraws R1

0 has sent R2 == R1

Immediate application of withdrawals causes loops



10 withdraws R1

0 has sent R2 == R1

Immediate application of withdrawals causes loops



10 withdraws R1

0 has sent R2 == R1

Immediate application of withdrawals causes loops



10 withdraws R1

0 has sent R2 == R1

Immediate application of withdrawals causes loops



• More than one “best” route

• BGP splits the AS in two

Mid-line

Immediate application of withdrawals causes loops



• More than one “best” route

• BGP splits the AS in two

Mid-line

Withdrawal from B

• B withdraws its route

• Withdrawal as a wavefront

Immediate application of withdrawals causes loops



• More than one “best” route

• BGP splits the AS in two

Mid-line

Withdrawal from B

• B withdraws its route

• Withdrawal as a wavefront

• A wave of transient loops

Loops

Immediate application of withdrawals causes loops



• More than one “best” route

• BGP splits the AS in two

Mid-line

Withdrawal from B

• B withdraws its route

• Withdrawal as a wavefront

• A wave of transient loops

• Until the mid-line

LoopsHow can we fix it?

Immediate application of withdrawals causes loops



Withdrawal order done right

Mid-line

• Initially do not apply 

the withdrawal



Withdrawal order done right

Mid-line

Withdrawal from B

• Initially do not apply 

the withdrawal



Withdrawal order done right

Mid-line

Withdrawal from B

• Initially do not apply 

the withdrawal



Mid-line

Withdrawal from B

• Initially do not apply 

the withdrawal

Withdrawal order done right



Mid-line

Withdrawal from B

• Initially do not apply 

the withdrawal

Withdrawal order done right



Mid-line

Withdrawal from B

• Initially do not apply 

the withdrawal

Withdrawal order done right



Mid-line

Application of the withdrawal sent by A

• Initially do not apply 

the withdrawal

Withdrawal order done right

• Apply over the reverse

of update propagation path



Mid-line

Application

• Initially do not apply 

the withdrawal

Withdrawal order done right

• Apply over the reverse

of update propagation path



Withdrawal order done right

Application of withdrawal

• Initially do not apply 

the withdrawal

• Apply over the reverse

of update activation path



Withdrawal order done right

Application of withdrawal

• Initially do not apply 

the withdrawal

• Apply over the reverse

of update activation path



Withdrawal order done right

Application of withdrawal

• Initially do not apply 

the withdrawal

• Apply over the reverse

of update activation path



SOUP uses reverse activation 

to explicitly apply worsening routes

Withdrawal order done right

• Initially do not apply 

the withdrawal

• Apply over the reverse

of update activation path



Reverse activation example

10 withdraws R1



10 withdraws R1

Reverse activation example



10 withdraws R1

Reverse activation example



SOUP ingredients

Wavefront propagation

• Basic ordering of updates

Reverse Forwarding Tree (RFT) and Forward Activation (FA)

• New / improving routes

Reverse Activation (RA)

• Worsening routes / withdrawals

RA -> FA switch

• Multiple alternatives propagating simultaneously

• Complete loop freedom



SOUP ingredients

Wavefront propagation

• Basic ordering of updates

Reverse Forwarding Tree (RFT) and Forward Activation (FA)

• New / improving routes

Reverse Activation (RA)

• Worsening routes / withdrawals

RA -> FA switch (in paper)

• Multiple alternatives propagating simultaneously

• Complete loop freedom

Last ingredient in paper



SOUP ingredients

Wavefront propagation

• Basic ordering of updates

Reverse Forwarding Tree (RFT) and Forward Activation (FA)

• New / improving routes

Reverse Activation (RA)

• Worsening routes / withdrawals

RA -> FA switch (in paper)

• Multiple alternatives propagating simultaneously

• Complete loop freedom

Last ingredient in paper

SOUP is provably loop-free at all 

instants if the internal topology is stable. Proof in paper.



A fly in my SOUP

Mid-line

Withdrawal from B



Mid-line

Withdrawal from B

A fly in my SOUP



Mid-line

Withdrawal from B

A fly in my SOUP



Mid-lineWithdrawal from B

“Wasted” time

Should be able to shortcut activation from the 

mid-line

A fly in my SOUP



LOUP to the rescue

A superset of SOUP. Inherits all mechanisms 

previously discussed.

Adds tell-me-when messages to shortcut activation



LOUP to the rescue

0 withdraws

Send tell-me-when to the would-be

next-hop

“Tell me when you are 

not using the route 

that I am using”



LOUP to the rescue

0 withdraws

Reply when

not using the route



LOUP to the rescue

0 withdraws

The reply acts as activation



SOUP vs LOUP

LOUPSOUP

Need to propagate activation 

all the way to the other end 

of the network 

Can shortcut activation using 

explicit tell-me-when messages

Provably does not loop
Can loop in the presence

of unusually high churn



Evaluation



Evaluation

• Loop freedom on update

• Delay on withdrawal

• Why not replace iBGP with DUAL[Aceves 1993]?

• Loop freedom on withdrawal

• Delay on update

• Load on the network

• FIB churn introduced

• Stability in the presence of IGP events

• Evaluation of real-world prototype

More evaluation in paper



Evaluation setup

• Simulation results based on publicly available HE topology

• Connectivity in POPs inferred from iBGP session data

• Model delay as speed-of-light + [0-10]ms

No processing delay. 

Expect loops to last longer in real-world.



iBGP+RRs causes loops on update

• One route, a better one is received at 0.1s

New better route arrives

Converged
No route – would 

blackhole

Would loop



LOUP causes no loops



Delay on withdrawal

Tell-me-when

time (s)



Conclusion

• iBGP’s transient loops disrupt end-to-end-reachability

• Careful ordering and application of routing changes

prevents loops

• Simple Ordered Update Protocol (SOUP):

• Fully distributed

• Provably prevents all transient loops when the underlying 

topology is stable

• Lightweight (vs. Consensus Routing, DUAL)

• Configuration free (vs. route reflectors)

• Fast convergence with Link-Ordered Update Protocol (LOUP)



MPLS does not get you off the hook

Because …

• Even a BGP-free core still uses BGP to distribute routes

• Route reflectors are still present if a lot of customer routes

• Some of the ordering problems shown still exist

• LOUP can also do VPNs



What about DUAL?

SOUP is different because

• It does not flood and does not require activations 

from all neighbors

• It does not need a complicated state machine to 

handle multiple simultaneous route events

• It is not maintaining the IGP – it runs on top of it and when 

an IGP event occurs it does not need to activate 

external prefixes



RFT maintenance

If the underlying topology changes the RFT must follow

• LOUP actively maintains the RFT using periodic messages

• All messages stored in log-like data structures

• If the IGP is stable (99+% of the time), LOUP enough

• For complete protection during IGP changes use EIGRP


