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Shuffling as the dominant cost: 
200 PB for one-month trace in a production bed 
58.6% of cross-pod traffic 
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Why Shuffling Stages Necessary? 
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Why Not Removed? 
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Hash By URL 

Hash By URL’ 

Functional Property: 
One-to-One => None 

DPP: 
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=> 
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What is SUDO? 
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Remove unnecessary shuffling steps 

Reasoning DPP 

across UDFs and Shuffling Stages 

Extract functional  properties of the UDF 



What’s next? 

• DPP (Data-partition properties) 

– What are the DPP? 

– How DPP change across shuffling stages? 

 

• Functional Properties 

– What are the functional properties? 

– How DPP change across UDFs? 

– How to identify the functional properties?  
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Data-partition Properties (DPP) 
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DPP Lattice 
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Example: how DPP changes through shuffling steps 

10 

Hash By URL 
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How DPP changes through shuffling steps? 
(or how to achieve certain DPP via shuffling steps?) 
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How DPP changes through shuffling steps? 
(or how to achieve certain DPP via shuffling steps?) 



Functional Properties 
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How DPP changes through UDFs? 
Pass-through 

Strictly-monotonic 

Monotonic 

One-to-one 
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Optimization: An Example 
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Hash By URL 

AdHoc (URL) 

Clustered (URL) 

Hash By URL’ 

Clustered (URL’) 

Step 1: collect data-shuffling requirements  based on given execution plan 

Step 2: forward DPP propagation based on transition graph about DPP change across UDFs 

AdHoc (URL) 

Clustered (URL’) 

Step 3: figure out shuffling `delta’ based on transition graph about DPP change across shuffling 

Local Sort 
Re-partition (hash) 
Merge Sort 

{} => removed 



Identify Functional Properties  
via Rule-based Deduction 

Deduction Rules 16 

24 hour 
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Floor 
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PassThough(hour) PassThough (hour) 

Constant(24) 

Constant 

Increase(z, t) :- DIV z y x, Increase(y, t), Constant(x) 

Increase(x, t) :- PassThrough(x, t) 

Increase (tmp,hour) 

Increase(y, t) :- Floor y x, Increase(x, t) Increase (tmp,hour) 

_(y, t) :- ASSIGN y x, _(x, t) Increase (day,hour) 

UDF: day = Floor(hour/24) 



Implementation 

• UDF analyzer to extract functional property 

– http://research.microsoft.com/Phoenix  to extract 
AST with 8281 LOC (C#) 

– http://bddbddb.sourceforge.net/  as deduction 
engine with ~100 Rules 

 

• SUDO rewriter to do optimization 

– ~1316 LOC (C#) 

17 

http://research.microsoft.com/Phoenix
http://bddbddb.sourceforge.net/
http://bddbddb.sourceforge.net/
http://bddbddb.sourceforge.net/


Coverage Study 

Property UDF <out-col, in-col> # Ratio % 

Pass-through 1,998,819 84.73 

Strictly-increasing 147,820 6.27 

Strictly-decreasing 0 0 

Increasing 138 0 

Decreasing 0 0 

One-to-one 1,758 0.08 

Others 210,544 8.92 

Sum 2,359,079 100 
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Dataset:  236,457 UDFs in in 10,099 jobs from production beds in 2010/2011. 

Among 2,278 (22.6%) eligible jobs in them, 17.5% of them can be optimized by SUDO. 

. Pass-through is the dominant functional property. 

. 91.2% of the functional properties are identified. 

. 17.5% of the eligible jobs can be optimized by SUDO. 



Effectiveness Study 
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Case Machine# Native 
Shuffling 
IO (TB) 

Native 
Latency 
(min) 

Shuffling Stage# 
Change 

Shuffling 
IO 
Reduction 

Latency 
Reduction 

Anchor Data 
Preprocessing 

150 0.9 25 2 => 1 47% 40% 

Trend Analysis 1,000 60 230 3 => 1 35% 45% 

Query-Anchor 
Relevance 

2,500 15 96 6 => 4 41% -27% 

. Shuffling IO reduction is significant 

. Latency reduction is introduced by data skew, which is rare case 



Related Work 

• Data-partition property propagation to reduce 
shuffling stages 

– Incorporating partitioning and parallel plans into 
the SCOPE optimizer (ICDE’10) 

 

• Apply program analysis to distributed data-
parallel computation 

– Manimal (PVLDB’11) 
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An inter-disciplinary research area 

System 

A place where we leverage PL 
techniques to advance the state-of-the-

art in system and database fields 

Database 

PL 

SUDO is the beginning … 

Engineering Performance PL 



Thanks! 
Questions? 
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