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Despite the cloud, this
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Pros

e No envir. changes ~~ subnet
* No app changes




Dedicated servers are a problem

* High deployment and
management cost

e Single point of failure



Dedicated servers are a problem

* High deployment and
management cost

e Single point of failure

* High availability
becomes expensive!
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GreenUp: A decentralized, minimal
software-only sleep proxy

Any machine can act as a proxy (manager) for
sleeping machines on the subnet
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1. How does GreenUp work?
2. What can | learn from GreenUp?
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3. How effective is GreenUp?

— Evaluation on ~100 user machines, currently
deployed on ~1,100 machines



GreenUp’s environment

Subnet domains
Load-sensitive, unreliable machines
Single administrative domain

Availability most important
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Distributed management:
Who manages M9?

 Wait for notification?

— No guarantees before sleep

— M1 failure abandons M8
* Probe randomly, repeat

since machines unreliable
* Load-sensitive machines,
so distribute probing

— Robust to manager issues
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[MS] [IV|9] p= Pr(ma\chine probed)
(n —m, )ln(ﬁ)

# awake machines

 Coupon collector analysis
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Load balance

* |nduction analysis:
equivalent to balls-in-bins!

In(n/2)
M?2 w after n/2 sleeps
. . Inln(n/2) P
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Subnet state coordination

* Distributed management

relies on global state

~ Who to probe?
M3 — How to manage?
M9
M5
e |P address, MAC address

* TCP listen ports
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Subnet state coordination

e Replicated state machine?
— Unreliable machines,

correlated behavior

— Strong consistency overkill
M8
M9
M5 e External database?
— Lose instant deployability




Subnet state coordination
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e Exploit subnet and weaker
consistency
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Subnet state coordination

. Periodic broadcast

while awake

. Rebroadcast by

managers while asleep

. Daily roll call to

garbage-collect state



er-machine state on a subnet when

~strong consistency is not required.
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1. How does GreenUp work?
2. What can | learn from GreenUp?

~ | « Protects against -
- simultaneous sleep | 44

e Caps the max load

3

Distributed Guardians

management coordination



Outline

3. How effective is GreenUp?

— Evaluation on ~100 user machines, currently
deployed on ~1,100 machines



Deployment in Microsoft

e C# code @

— Interfaces with packet : N e
sniffer/network driver _H l_

 Client GUI for users and
easy deployment

* Pilot on ~1,100 machines



Evaluation

* Logs from 101 Windows 7 machines, Feb. —
Sep. 2011

e Questions:

— Does GreenUp consistently wake machines when
accessed?

— Does it do so in time to meet user patience?
— Can GreenUp scale to large subnets?
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* Connect to machines using
Samba (TCP port 139)

e 11 different days
(weekends, evenings):

— 496 already awake, 278
woken, 5 unwakeable

— Most failures due to Wol

e 99.4% success rate



GreenUp wakes machines reliably

* Connect to machines using
Samba (TCP port 139)

e 11 different dz
(weekends, ev

— 496 already a
woken, 5 unwakeable

— Most failures due to Wol

Wol is availability
bottleneck!

e 99.4% success rate
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— User retry logic




GreenUp wakes machines quickly

 GreenUp relies on some
user patience
— Wakeup delay
— User retry logic

* Side-effect of Wol
failure: manager logs
how long user waits

— 48 events
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e Convolving: GreenUp wakes machines before user
gives up 85% of the time



GreenUp scales to large subnets

* Sources of manager load
— Intercept traffic for asleep machines
— Broadcast state
— Probe/respond to probes
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GreenUp scales to large subnets
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GreenUp scales to large subnets

* Simulated probing load on 2.4-GHz, dual-core
Windows 7 machine w/ 4GB memory and 1Gb/s NIC:

# of managed machines CPU utilization
100 12%
200 21%

300 29%



GreenUp scales to large subnets

* Simulated probing load on 2.4-GHz, dual-core
Windows 7 machine w/ 4GB memory and 1Gb/s NIC:

# of managed machines CPU utilization
100 12%
200 21%
300 29%

e Guardians ensure max load is 100
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Does GreenUp save more energy?

* Energy savings depends on sleep time
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Does GreenUp save more energy?

* Energy savings depends on sleep time

* |IT enforces sleep policy at Microsoft, so hard
to tell
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Extension: Higher availability via
explicit load hand-off

* Theorem. Expected max
load = n/c< x H,.
# awake Harmonic
[M 1] [MS] [M9] machines numbers
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* Sleep proxy idea: Christensen & Gulledge 98
* Recently:
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Jettison, EuroSys "12
SleepServer, ATC’10 application stubs

Nedevschi et al., NSDI '08

Reich et al.. ATC’10 dedicated servers



Other solutions

* Sleep proxy idea: Christen!
* Recently:

System
Somniloquy, NSDI '09

LiteGreen, ATC '10
Jettison, EuroSys '12

SleepServer, ATC’10

Nedevschi et al., NSDI '08
Reich et al., ATC’10

Barriers to
deployment

30

Technique

e ‘98

augmented NICs
VM migration
application stubs

dedicated servers



GreenUp

 Completely decentralized, software-only
sleep proxy

e Useful distributed systems techniques

* High availability at low cost, even as
machines sleep!

http://research.microsoft.com/en-us/projects/greenup/




