Don't Lose Sleep Over Availability: The GreenUp Decentralized Wakeup Service

Siddhartha Sen, Princeton University

Jacob R. Lorch, Richard Hughes, Carlos G. J. Suarez, Brian Zill, Weverton Cordeiro, and Jitendra Padhye

users, IT admins

users, IT admins

Despite the cloud, this is a common scenario

Dedicated servers are a problem

- High deployment and management cost
- Single point of failure

Dedicated servers are a problem

- High deployment and management cost
- Single point of failure
- High availability becomes expensive!

GreenUp: A decentralized, minimal software-only sleep proxy

GreenUp: A decentralized, minimal software-only sleep proxy

Any machine can act as a proxy (manager) for sleeping machines on the subnet

Outline

- 1. How does GreenUp work?
- 2. What can I learn from GreenUp?

Outline

- 1. How does GreenUp work?
- 2. What can I learn from GreenUp?

Distributed	
management	

Machine	State

Subnet state coordination

Guardians

Outline

- 1. How does GreenUp work?
- 2. What can I learn from GreenUp?

Machine	State

Distributed management

Subnet state coordination

Guardians

- 3. How effective is GreenUp?
 - Evaluation on ~100 user machines, currently deployed on ~1,100 machines

GreenUp's environment

- Subnet domains
- Load-sensitive, unreliable machines
- Single administrative domain
- Availability most important

Distributed management: Who manages M9?

Distributed management: Who manages M9?

• Wait for notification?

- Wait for notification?
 - No guarantees before sleep
 - M1 failure abandons M8

- Wait for notification?
 - No guarantees before sleep
 - M1 failure abandons M8
- Probe randomly, repeat since machines unreliable
- Load-sensitive machines, so distribute probing
 - Robust to manager issues

awake machines

 $(n-m_i)\ln\left(\frac{1}{1-p}\right)$

awake machines

 $(n-m_i)\ln\left(\frac{1}{1-p}\right)$

awake machines

 $p = \Pr(\text{machine probed})$ $(n - m_i) \ln(\frac{1}{1 - p})$

awake machines

• Coupon collector analysis

awake machines

• Coupon collector analysis

 $(n-m_i)\ln\left(\frac{1}{1-p}\right)$

awake machines

 $(n-m_i)\ln\left(\frac{1}{1-p}\right)$

awake machines

 $(n-m_i)\ln\left(\frac{1}{1-p}\right)$

awake machines

Availability most important

$$(n-m_i)\ln\left(\frac{1}{1-p}\right)$$

awake machines

- Availability most important
- Simple resolution protocol

$$(n-m_i)\ln\left(\frac{1}{1-p}\right)$$

awake machines

- Availability most important
- Simple resolution protocol

 Induction analysis: equivalent to balls-in-bins!

$$\frac{\ln(n/2)}{\ln\ln(n/2)}$$
 after n/2 sleeps

Induction analysis:

Distributed management elects leaders in a robust and load-balanced way, assuming temporary conflicts are tolerable.

- Distributed management relies on global state
 - Who to probe?
 - How to manage?

- Distributed management relies on global state
 - Who to probe?
 - How to manage?
- IP address, MAC address
- TCP listen ports

- Replicated state machine?
 - Unreliable machines, correlated behavior
 - Strong consistency overkill

- Replicated state machine?
 - Unreliable machines, correlated behavior
 - Strong consistency overkill
- External database?
 - Lose instant deployability

- Replicated state machine?
 - Unreliable machines, correlated behavior
 - Strong consistency overkill
- External database?
 Lose instant deployability
- Exploit subnet and weaker consistency

- Periodic broadcast while awake
- 2. Rebroadcast by managers while asleep

- Periodic broadcast while awake
- 2. Rebroadcast by managers while asleep

- Periodic broadcast while awake
- 2. Rebroadcast by managers while asleep

- Periodic broadcast while awake
- 2. Rebroadcast by managers while asleep

- Periodic broadcast while awake
- 2. Rebroadcast by managers while asleep
- 3. Daily roll call to garbage-collect state

Subnet state coordination distributes per-machine state on a subnet when strong consistency is not required.

3. Daily roll call to garbage-collect state

eep

Outline

- 1. How does GreenUp work?
- 2. What can I learn from GreenUp?

Machine	State

Distributed management

Subnet state coordination

Guardians

- 3. How effective is GreenUp?
 - Evaluation on ~100 user machines, currently deployed on ~1,100 machines

Outline

- 1. How does GreenUp work?
- 2. What can I learn from GreenUp?

- 3. How effective is GreenUp?
 - Evaluation on ~100 user machines, currently deployed on ~1,100 machines
Outline

- 1. How does GreenUp work?
- 2. What can I learn from GreenUp?

Machine	State

Distributed management

Subnet state coordination

Guardians

- 3. How effective is GreenUp?
 - Evaluation on ~100 user machines, currently deployed on ~1,100 machines

Deployment in Microsoft

• C# code

- Interfaces with packet sniffer/network driver
- Client GUI for users and easy deployment
- Pilot on ~1,100 machines

Evaluation

- Logs from 101 Windows 7 machines, Feb. –
 Sep. 2011
- Questions:
 - Does GreenUp consistently wake machines when accessed?
 - Does it do so in time to meet user patience?
 - Can GreenUp scale to large subnets?

GreenUp wakes machines reliably

GreenUp wakes machines reliably

- Connect to machines using Samba (TCP port 139)
- 11 different days (weekends, evenings):
 - 496 already awake, 278
 woken, 5 unwakeable
 - Most failures due to WoL
- 99.4% success rate

GreenUp wakes machines reliably

- Connect to machines using Samba (TCP port 139)
- 11 different da (weekends, ev
 - 496 already a woken, 5 unwakeable
 - Most failures due to WoL
- WoL is availability bottleneck!

• 99.4% success rate

- GreenUp relies on *some* user patience
 - Wakeup delay
 - User retry logic

- GreenUp relies on *some* user patience
 - Wakeup delay
 - User retry logic
- Side-effect of WoL failure: manager logs how long user waits
 - 48 events

 Convolving: GreenUp wakes machines before user gives up 85% of the time

 Convolving: GreenUp wakes machines before user gives up 85% of the time

- Sources of manager load
 - Intercept traffic for asleep machines
 - Broadcast state
 - Probe/respond to probes

 Simulated probing load on 2.4-GHz, dual-core Windows 7 machine w/ 4GB memory and 1Gb/s NIC:

# of managed machines	CPU utilization
100	12%
200	21%
300	29%

Simulated probing load on 2.4-GHz, dual-core
 Windows 7 machine w/ 4GB memory and 1Gb/s NIC:

# of managed machines	CPU utilization
100	12%
200	21%
300	29%

• Guardians ensure max load is 100

• Energy savings depends on sleep time

• Energy savings depends on sleep time

• Energy savings depends on sleep time

- Energy savings depends on sleep time
- IT enforces sleep policy at Microsoft, so hard to tell

Other solutions

- Sleep proxy idea: Christensen & Gulledge '98
- Recently:

System	Technique
Somniloquy, NSDI '09	augmented NICs
LiteGreen, ATC '10 Jettison, EuroSys '12	VM migration
SleepServer, ATC '10	application stubs
Nedevschi <i>et al.,</i> NSDI '08 Reich <i>et al.,</i> ATC '10	dedicated servers

Other solutions

- Sleep proxy idea: Christen
- Recently:

Barriers to deployment

ge '98

System	Technique
Somniloquy, NSDI '09	augmented NICs
LiteGreen, ATC '10 Jettison, EuroSys '12	VM migration
SleepServer, ATC '10	application stubs
Nedevschi <i>et al.,</i> NSDI '08 Reich <i>et al.,</i> ATC '10	dedicated servers

GreenUp

- Completely decentralized, software-only sleep proxy
- Useful distributed systems techniques
- High availability at low cost, even as machines sleep!

