Don’t Lose Sleep Over Availability:
The GreenUp Decentralized Wakeup Service

Siddhartha Sen, Princeton University

Jacob R. Lorch, Richard Hughes, Carlos G. J. Suarez,
Brian Zill, Weverton Cordeiro, and Jitendra Padhye

Microsoft’

Research

Enterprise networks

Enterprise networks

WAN @

users, IT admins

Enterprise networks

users, IT admins

Despite the cloud, this
ISa common scenario

Enterprise networks

[9

Energy savings Availability

Enterprise networks

GreenUp!

‘xk’ffg—-‘

Energy savings Availability

Sleep proxy

o

WAN

Machine

(active)

Sleep proxy

| M

WAN

Machine
Sleep proxy

(active)

[

.

Machine
(asleep)

\

J

Sleep proxy

WAN

@2

Sleep proxy

Sleep proxy

o

WAN

[

.

\
Machine Sleep br
(asleep) P Proxy
J

[

.

Machine
(asleep)

\

J

Sleep proxy

WAN

Send traffic to me!

@2

Sleep proxy

-

-

Machine
(asleep)

~

J

Sleep proxy

WAN

e

Sleep proxy

-

-

Machine
(asleep)

~

J

Sleep proxy

WAN

Remote request
(TCP SYN)

-

Sleep proxy

-

(asleep)

J

Sleep proxy

WAN

Machine ' Remote request

e

(TCP SYN)

-

-

Machine
(asleep)

~

J

Sleep proxy

WAN

e

Wake up!
(Wol)

Sleep proxy

Sleep proxy

—
Machi| wake up!
(aslee| (Wol)

-

Sleep proxy

Sleep proxy

| M

WAN

Machine
Sleep proxy

(active)

Sleep proxy

Remote request
(TCP SYN)

-

WAN

Machine
(active)

Sleep proxy

Sleep proxy

| M

WAN

Remote request
(TCP SYN)

Sleep proxy

Sleep proxy

| M

WAN

Response

Machine
Sleep proxy

(active)

Sleep proxy

(4
Response

L

WAN

Machine
Sleep proxy

(active)

Pros

e No envir. changes ~~ subnet
* No app changes

Dedicated servers are a problem

* High deployment and
management cost

e Single point of failure

Dedicated servers are a problem

* High deployment and
management cost

e Single point of failure

* High availability
becomes expensive!

GreenUp: A decentralized, minimal
software-only sleep proxy

GreenUp: A decentralized, minimal
software-only sleep proxy

Any machine can act as a proxy (manager) for
sleeping machines on the subnet

Outline

1. How does GreenUp work?
2. What can | learn from GreenUp?

Outline

1. How does GreenUp work?
2. What can | learn from GreenUp?

O
. »
Distributed Subnet state Guardians

management coordination

Outline

1. How does GreenUp work?
2. What can | learn from GreenUp?

O
-]
Distributed Subnet state Guardians
management coordination

3. How effective is GreenUp?

— Evaluation on ~100 user machines, currently
deployed on ~1,100 machines

GreenUp’s environment

Subnet domains
Load-sensitive, unreliable machines
Single administrative domain

Availability most important

Running example (not to scale)

Running example (not to scale)

m\ awake

Running example (not to scale)

m\ awake

asleep +
unmanaged

Running example (not to scale)

manager
asleep +

managed

awake

asleep +
unmanaged

Distributed management:
Who manages M9?

Distributed management:
Who manages M9?

 Wait for notification?

Distributed management:
Who manages M9?

 Wait for notification?

— No guarantees before sleep

— M1 failure abandons M8

Distributed management:
Who manages M9?

 Wait for notification?

— No guarantees before sleep

— M1 failure abandons M8
* Probe randomly, repeat

since machines unreliable
* Load-sensitive machines,
so distribute probing

— Robust to manager issues

Distributed management:
Who manages M9?

total #
machines
n

awake machines

Distributed management:
Who manages M9?

total # # managed
machines by i

awake machines

Distributed management:
Who manages M9?

total # # managed
machines by i
\)
n—m,
awake machines

M3

Distributed management:
Who manages M9?

(n —m,)ln(ﬁ)

awake machines

Distributed management:
Who manages M9?

o [0

/g

(n —m,)ln(ﬁ)

awake machines

Distributed management:
Who manages M9?

p = Pr(machine probed)
T :

»,IVI (n—m)ln(ﬁ)

awake machines

 Coupon collector analysis

Distributed management:
Who manages M9?

[MS] [IV|9] p= Pr(ma\chine probed)
(n —m,)ln(ﬁ)

awake machines

 Coupon collector analysis

Multiple managers

o [0

.

(n —m,)ln(ﬁ)

awake machines

B

2
4

\Y
\Y

Multiple managers

||
(n —m,)ln(ﬁ)

awake machines

Multiple managers

||
(n —m,)ln(ﬁ)

* Availability most important

awake machines

Multiple managers

[mg] (M)

M2 (n —m,)ln(ﬁ)
awake machines

e

M9
M3

* Availability most important

M4
* Simple resolution protocol

Multiple managers

[mg] (M)

M2 (n —m,)ln(ﬁ)
awake machines

e

\E

* Availability most important

M4
* Simple resolution protocol

Load balance

[mg] (m9]

—)

M1

———/

\E

M4

8680
N

Load balance

Load balance

* |nduction analysis:
equivalent to balls-in-bins!

In(n/2)
M?2 w after n/2 sleeps
. . Inln(n/2) P

rnbuted management elects Ieaders in a

B

Subnet state coordination

* Distributed management

relies on global state

— Who to probe?

— How to manage?

Subnet state coordination

* Distributed management

relies on global state

~ Who to probe?
M3 — How to manage?
M9
M5
e |P address, MAC address

* TCP listen ports

Subnet state coordination

e Replicated state machine?
— Unreliable machines,
correlated behavior

— Strong consistency overkill

M3
M9
M5

Subnet state coordination

e Replicated state machine?
— Unreliable machines,

correlated behavior

— Strong consistency overkill
M8
M9
M5 e External database?
— Lose instant deployability

Subnet state coordination

M3
M9
M5

e Exploit subnet and weaker
consistency

M5

M6

\

M9

Subnet state coordination

1. Periodic broadcast

while awake

Subnet state coordination

@
@
@
@

MO state

1. Periodic broadcast
while awake

Subnet state coordination

1. Periodic broadcast

while awake

Subnet state coordination

1. Periodic broadcast

while awake

Subnet state coordination

1. Periodic broadcast
while awake

Subnet state coordination

1. Periodic broadcast
while awake

2. Rebroadcast by
managers while asleep

Subnet state coordination

[V8 state M8 1. Periodic broadcast
while awake

2. Rebroadcast by
managers while asleep

Subnet state coordination

[V8 state M8 1. Periodic broadcast
while awake
T 2. Rebroadcast by

managers while asleep

@
-@

Subnet state coordination

V8’ state W18 1. Periodic broadcast
while awake

2. Rebroadcast by
managers while asleep

Subnet state coordination

. Periodic broadcast

while awake

. Rebroadcast by

managers while asleep

. Daily roll call to

garbage-collect state

er-machine state on a subnet when

~strong consistency is not required.

Outline

1. How does GreenUp work?
2. What can | learn from GreenUp?

O
. »
Distributed Subnet state Guardians

management coordination

Outline

1. How does GreenUp work?
2. What can | learn from GreenUp?

~ | « Protects against -
- simultaneous sleep | 44

e Caps the max load

3

Distributed Guardians

management coordination

Outline

3. How effective is GreenUp?

— Evaluation on ~100 user machines, currently
deployed on ~1,100 machines

Deployment in Microsoft

e C# code @

— Interfaces with packet : N e
sniffer/network driver _H l_

 Client GUI for users and
easy deployment

* Pilot on ~1,100 machines

Evaluation

* Logs from 101 Windows 7 machines, Feb. —
Sep. 2011

e Questions:

— Does GreenUp consistently wake machines when
accessed?

— Does it do so in time to meet user patience?
— Can GreenUp scale to large subnets?

GreenUp wakes machines reliably

GreenUp wakes machines reliably

* Connect to machines using
Samba (TCP port 139)

e 11 different days
(weekends, evenings):

— 496 already awake, 278
woken, 5 unwakeable

— Most failures due to Wol

e 99.4% success rate

GreenUp wakes machines reliably

* Connect to machines using
Samba (TCP port 139)

e 11 different dz
(weekends, ev

— 496 already a
woken, 5 unwakeable

— Most failures due to Wol

Wol is availability
bottleneck!

e 99.4% success rate

GreenUp wakes machines quickly

 GreenUp relies on some
user patience
— Wakeup delay
— User retry logic

GreenUp wakes machines quickly

 GreenUp relies on some
user patience
— Wakeup delay
— User retry logic

* Side-effect of Wol
failure: manager logs
how long user waits

— 48 events

GreenUp wakes machines quickly

100 7 o -—————
9 1 ¢

80 1 #

70 -
60 -
50 -
40 -
30 -
20 -
10

CDF (%)

- = =« T1me to wake

= [Jser patience

0 30 60 90 120 150 180
Time (sec)

GreenUp wakes machines quickly

100 7 - D G GD Gb G Gb G Gb G GD GD =D = - = = ————
”

9 1 o

80 14 87% of wakeups
take < 9 sec

70 -
60 -
50 -
40
30
20
10

CDF (%)

- = =« T1me to wake

= [Jser patience

0 30 60 90 120 150 180
Time (sec)

GreenUp wakes machines quickly

100 7 ’-----—---- ————————————
9 1 o
80 - " 87% of wakeups
9 Zg It take < 9 sec
~ !
= a0 !
& ! = === Time to wake
30 19
20 14 ;
10 User patience
0 -‘ |] 1 | 1 1
0 30 60 90 120 150 180
Time (sec)

e Convolving: GreenUp wakes machines before user
gives up 85% of the time

GreenUp wakes machines quickly

100 7 ’-----—---- ————————————
9 1 o
80 - 'l 87% of wakeups
< Y, take < 9 sec
e, 00 i
= 0 T
2 40 {4
O 30 44 13% of users give up after |
20 11 3 sec (port scanners?) | ..
10
0 -‘ | I 1 | 1 1
0 30 60 90 120 150 180

Time (sec)

e Convolving: GreenUp wakes machines before user
gives up 85% of the time

GreenUp scales to large subnets

* Sources of manager load
— Intercept traffic for asleep machines
— Broadcast state
— Probe/respond to probes

GreenUp scales to large subnets

- e e o)

T —
90 |4
30 +.
70
60
50
40
30
20
10
0

CDF (%)

0 | 2 3 4 S 6 7
CPU utilization (%)

GreenUp scales to large subnets

---.0 ooooooo 1

100 - o e e e W WS WP P P U U e
90 ‘ ._._.000

30 4 aee

70 e

60 o

50 +—*

30

30 4w

20

10
0

CDF (%)

0 1 2 3 4 5 6 7
CPU utilization (%)

GreenUp scales to large subnets

---.O ooooooo | e—) ---.3 4—5

CDF (%)

100
90
80
70
60
50

40 +—5
30 4

20
10

0 1 2 3 4 5 6 7
CPU utilization (%)

GreenUp scales to large subnets

---.O ec0cocce | emmmm—— ") ---.3 4 5

CDF (%)

100
90
80
70
60
50

40 -
30

20
10
0

-‘----"-'-'-'—'-—’_

Good load balance +
enough awake machines = |
few managed machines! |-

0 1 2 3 4 5 6 7
CPU utilization (%)

GreenUp scales to large subnets

* Simulated probing load on 2.4-GHz, dual-core
Windows 7 machine w/ 4GB memory and 1Gb/s NIC:

of managed machines CPU utilization
100 12%
200 21%

300 29%

GreenUp scales to large subnets

* Simulated probing load on 2.4-GHz, dual-core
Windows 7 machine w/ 4GB memory and 1Gb/s NIC:

of managed machines CPU utilization
100 12%
200 21%
300 29%

e Guardians ensure max load is 100

Does GreenUp save more energy?

* Energy savings depends on sleep time

Does GreenUp save more energy?

* Energy savings depends on sleep time

100
30
60
40
20
0 - . 1
0O 10 20 30 40 50 60 70 &0 90

Percent of time asleep

CDF (%)

Does GreenUp save more energy?

* Energy savings depends on sleep time

100
30 /

;\? 60
~ Average 31% =
% 40 $17.50/machine/year

20 (/
O | | | | | | | | | |
O 10 20 30 40 350 60 70 &0 90

Percent of time asleep

Does GreenUp save more energy?

* Energy savings depends on sleep time

* |IT enforces sleep policy at Microsoft, so hard
to tell

Extension: Higher availability via
explicit load hand-off

[mg] (m9]

—

M1

——

\E

8680
N

M4

Extension: Higher availability via
explicit load hand-off

Extension: Higher availability via
explicit load hand-off

[mg] (m9)]

—

[Ml

2

\E

8680

M4

Extension: Higher availability via
explicit load hand-off

[() (9 g

Extension: Higher availability via
explicit load hand-off

[() (9 g

Extension: Higher availability via
explicit load hand-off

* Theorem. Expected max
load = n/c< x H,.
awake Harmonic
[M 1] [MS] [M9] machines numbers

Other solutions

* Sleep proxy idea: Christensen & Gulledge 98
* Recently:

System Technique
Somniloquy, NSDI '09 augmented NICs
LiteFireen, ATC ’19 Wi et
Jettison, EuroSys "12
SleepServer, ATC’10 application stubs

Nedevschi et al., NSDI '08

Reich et al.. ATC’10 dedicated servers

Other solutions

* Sleep proxy idea: Christen!
* Recently:

System
Somniloquy, NSDI '09

LiteGreen, ATC '10
Jettison, EuroSys '12

SleepServer, ATC’10

Nedevschi et al., NSDI '08
Reich et al., ATC’10

Barriers to
deployment

30

Technique

e ‘98

augmented NICs
VM migration
application stubs

dedicated servers

GreenUp

 Completely decentralized, software-only
sleep proxy

e Useful distributed systems techniques

* High availability at low cost, even as
machines sleep!

http://research.microsoft.com/en-us/projects/greenup/

