
Rhea: Automatic Filtering for
Unstructured Cloud Storage

Christos Gkantsidis, Dimitrios Vytiniotis, Orion Hodson,
Dushyanth Narayanan, Florin Dinu, Antony Rowstron

Microsoft Research, Cambridge, UK

Cluster design for data analytics:
[Traditional] Collocate storage & compute

2

 Hadoop & MapReduce, Dryad/DryadLinq, Scope, etc

Cloud Analytics: Hadoop in the Cloud
Separate storage and compute

3

Cloud Analytics: Hadoop in the Cloud
Separate storage and compute

4

Bottleneck

Problem: Transfer lots of data …

5

…

…

ComputeStorage Network

Problem: Transfer lots of data …
… even when only a subset is needed

6

…

…

ComputeStorage Network

A2, …,

B1, B2, B3

C2, …,

D1, D2

Problem: Transfer lots of data …
… even when only a subset is needed

7

…

…

ComputeStorage Network

Scenario

Apache Hadoop (Map/Reduce)

 Input data in storage service

Hadoop running in compute service

Unstructured data:
 text, log files, etc

8

Goal

Transparently reduce data transfers
from storage to compute

How to minimize transfers?

• Strawman: Can we execute mappers on storage nodes?
 Intuition: Mappers throw away a lot of data

Data reduction not guaranteed

Difficult to stop mappers during storage overload

Storage nodes have to execute complicated logic
(Hadoop system & protocol)

Dependencies on runtime environment, libraries, etc

• Better approach: Filter unnecessary data at storage nodes
• Filters need to be opportunistic and transparent

i.e. can kill/restart at any time (e.g. during overload)

• Filters need to be correct
i.e. always preserve correctness of computation

9

Challenge: How to filter the data?

Recall: data are typically unstructured text

No external source of structure/schema

Insight:

 The data analytic job knows structure

… and what needs to be filtered

10

Idea: static analysis of job bytecode

11

public void map(… value …)

{

String[] entries = value.toString().split(“\t”);

String articleName = entries[0];

String pointType = entries[1];

String geoPoint = entries[2];

if (GEO_RSS_URI.equals(pointType)) {

StringTokenizer st = new StringTokenizer(geoPoint, " ");

String strLat = st.nextToken();

String strLong = st.nextToken();

double lat = Double.parseDouble(strLat);

double lang = Double.parseDouble(strLong);

String locationKey = ………

String locationName = ………

geoLocationKey.set(locationKey);

geoLocationName.set(locationName);

outputCollector.collect(geoLocationKey, geoLocationName);

} }

Input Value

Projection operation

 3 “columns” interesting

(out of 4 for this job)

Selection operation

 roughly 1/3 of rows are

of the interesting type

Output operation

Rhea

 Static analysis of Java byte code

 Extract row (select) & column (project) filters
 as executable Java methods

 column filters can also be C, regular expressions, etc.

 Filters are conservative:
 May accept more data than strictly necessary

 Filters are opportunistic
 kill/restart at any time (e.g. during storage overload)

 Filters are transparent
 no change to Hadoop job 12

Rhea’s Architecture

13

Storage

Job

Data

Job

Data

Hadoop

Cluster

Input Job
Rhea Filter

Extraction

Network

Filter

descriptions

Filter

Filter

Rhea’s Architecture

14

Storage

Job

Data

Job

Data

Hadoop

Cluster

Input Job
Rhea Filter

Extraction

Network

Filter

descriptions

Filter

Filter

Filters: Identify bits of data that
affect output of mapper

 Row Filters:
 Given an input row:

Does it lead to output?

 Row corresponds to one invocation of map

 Approach: Path Slicing

 Challenge: Deal with mutable state

Column Filters:
 Given a row that leads to output:

Which substrings of the row affect output?

 Approach: Abstract interpretation

 Challenge: Deal with loops
15

Row Filter Generation via Path Slicing

16

public void map(… value …)

{

String[] entries = value.toString().split(“\t”);

String articleName = entries[0];

String pointType = entries[1];

String geoPoint = entries[2];

if (GEO_RSS_URI.equals(pointType)) {

StringTokenizer st = new

StringTokenizer(geoPoint, " ");

String strLat = st.nextToken();

String strLong = st.nextToken();

double lat = Double.parseDouble(strLat);

double lang = Double.parseDouble(strLong);

String locationKey = ………

String locationName = ………

geoLocationKey.set(locationKey);

geoLocationName.set(locationName);

outputCollector.collect(geoLocationKey,

geoLocationName);

} }

public boolean filter(Text bcvar2) {

String[] bcvar5 = bcvar2.toString().split(“\t”);

String bcvar7 = bcvar5[1];

boolean irvar0_1 =

GEO_RSS_URI.equals(bcvar7);

if (irvar0_1 == 1) { return true; }

return false;

}

1. Tag “observable” instructions

2. Identify path conditions that

lead to observable instructions

3. Perform dataflow analysis to

identify all instructions that

affect path conditions

4. Emit code

Challenge: Taming State

 Map-Reduce program are often NOT pure functions
M/R programmers use state (i.e. objects in heap):
 … to avoid frequent initializations

 … to pass job parameters

 … to optimize temporary storage (e.g. with dictionaries)

 Filters cannot rely on mutable state:
 Recall: output of filtered data = output of original data

 Solution: Tag all access to mutable fields as “observable”
(i.e. output) instructions.

17

Column Filter Generation (aka projects)

Goal: Identify substrings that affect output

 Based on abstract interpretation
 Captures common patterns for “reading” fields:

e.g. string tokenizers, regular expressions, etc.

 Guarantees termination by using numerical constraints

 Important to deal with loops

Output:
 Tokenization method and separator character

 List of indices of interesting tokens
18

Filter construction

Experimental setup

19

Job Selectivity

20

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1





0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Job Selectivity

21





0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measuring runtime benefits

We cannot extend Azure Storage or
Amazon S3 with filters 

 Instead, we use pre-filtered data
and compare with unfiltered data

We assume storage with: (a) scalable I/O, and
(b) enough processing power for filtering

22

Diversion:
Do we have enough processing power?

 Row & Column filtering in Java: ~100MBytes/sec per core

 Scales linearly with multiple cores

 ≤2 cores for filtering enough for all but 1 job

 Runtime always reduces runtime, even with fewer cores

 Performance dominated by string input/output, not filter

 Column filtering in optimized C: 5-17x faster than Java

23

Runtime benefits

24

30-80% reduction in runtime

Runtime reductions less than selectivity

due to Hadoop overheads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li

z
e
d

 r
u

n
ti

m
e





Conclusions

Hadoop in the cloud:
separation of storage and compute.

 Rhea minimizes transfers from
storage to compute
 Uses static analysis on the job bytecode

 Extracts selection and projection operators from code

 Generates filters to run in the storage layer

 Runs transparently to user (and is safe for provider)

 Potential benefits to the user (time, money) and
cloud provider (bandwidth)

25

©2013 Microsoft Corporation. All rights reserved.

