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Cluster design for data analytics: 
[Traditional] Collocate storage & compute
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 Hadoop & MapReduce, Dryad/DryadLinq, Scope, etc



Cloud Analytics: Hadoop in the Cloud
Separate storage and compute

3



Cloud Analytics: Hadoop in the Cloud
Separate storage and compute
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Bottleneck



Problem: Transfer lots of data …
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Problem: Transfer lots of data …
… even when only a subset is needed 
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Problem: Transfer lots of data …
… even when only a subset is needed 
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Scenario

Apache Hadoop (Map/Reduce)

 Input data in storage service

Hadoop running in compute service

Unstructured data:
 text, log files, etc
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Goal

Transparently reduce data transfers
from storage to compute



How to minimize transfers?

• Strawman: Can we execute mappers on storage nodes?
 Intuition: Mappers throw away a lot of data

Data reduction not guaranteed

Difficult to stop mappers during storage overload

Storage nodes have to execute complicated logic 
(Hadoop system & protocol)

Dependencies on runtime environment, libraries, etc

• Better approach: Filter unnecessary data at storage nodes
• Filters need to be opportunistic and transparent

i.e. can kill/restart at any time (e.g. during overload)

• Filters need to be correct
i.e. always preserve correctness of computation
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Challenge: How to filter the data?

Recall: data are typically unstructured text

No external source of structure/schema

Insight:

 The data analytic job knows structure

… and what needs to be filtered
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Idea: static analysis of job bytecode
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public void map(… value …) 

{

String[] entries = value.toString().split(“\t”);

String articleName = entries[0];

String pointType = entries[1];

String geoPoint = entries[2];

if (GEO_RSS_URI.equals(pointType)) {

StringTokenizer st = new StringTokenizer(geoPoint, " ");

String strLat = st.nextToken();

String strLong = st.nextToken();

double lat = Double.parseDouble(strLat);

double lang = Double.parseDouble(strLong);

String locationKey = ………

String locationName = ………

geoLocationKey.set(locationKey);

geoLocationName.set(locationName);

outputCollector.collect(geoLocationKey, geoLocationName);

} }

Input Value

Projection operation

 3 “columns” interesting

(out of 4 for this job)

Selection operation

 roughly 1/3 of rows are 

of the interesting type

Output operation



Rhea

 Static analysis of Java byte code

 Extract row (select) & column (project) filters
 as executable Java methods

 column filters can also be C, regular expressions, etc.

 Filters are conservative:
 May accept more data than strictly necessary

 Filters are opportunistic
 kill/restart at any time (e.g. during storage overload)

 Filters are transparent
 no change to Hadoop job 12



Rhea’s Architecture
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Filters: Identify bits of data that 
affect output of mapper

 Row Filters: 
 Given an input row: 

Does it lead to output?

 Row corresponds to one invocation of map

 Approach: Path Slicing

 Challenge: Deal with mutable state

Column Filters: 
 Given a row that leads to output: 

Which substrings of the row affect output?

 Approach: Abstract interpretation

 Challenge: Deal with loops
15



Row Filter Generation via Path Slicing
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public void map(… value …) 

{

String[] entries = value.toString().split(“\t”);

String articleName = entries[0];

String pointType = entries[1];

String geoPoint = entries[2];

if (GEO_RSS_URI.equals(pointType)) {

StringTokenizer st = new 

StringTokenizer(geoPoint, " ");

String strLat = st.nextToken();

String strLong = st.nextToken();

double lat = Double.parseDouble(strLat);

double lang = Double.parseDouble(strLong);

String locationKey = ………

String locationName = ………

geoLocationKey.set(locationKey);

geoLocationName.set(locationName);

outputCollector.collect(geoLocationKey, 

geoLocationName);

} }

public boolean filter(Text bcvar2) {

String[] bcvar5 = bcvar2.toString().split(“\t”);

String bcvar7 = bcvar5[1];

boolean irvar0_1 = 

GEO_RSS_URI.equals(bcvar7);

if (irvar0_1 == 1)  { return true; }

return false; 

}

1. Tag “observable” instructions

2. Identify path conditions that 

lead to observable instructions

3. Perform dataflow analysis to 

identify all instructions that 

affect path conditions

4. Emit code



Challenge: Taming State

 Map-Reduce program are often NOT pure functions
M/R programmers use state (i.e. objects in heap):
 … to avoid frequent initializations

 … to pass job parameters

 … to optimize temporary storage (e.g. with dictionaries)

 Filters cannot rely on mutable state:
 Recall: output of filtered data = output of original data

 Solution: Tag all access to mutable fields as “observable” 
(i.e. output) instructions.
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Column Filter Generation (aka projects)

Goal: Identify substrings that affect output

 Based on abstract interpretation
 Captures common patterns for “reading” fields:

e.g. string tokenizers, regular expressions, etc.

 Guarantees termination by using numerical constraints

 Important to deal with loops

Output:
 Tokenization method and separator character

 List of indices of interesting tokens
18

Filter construction



Experimental setup
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Job Selectivity
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Job Selectivity
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Measuring runtime benefits

We cannot extend Azure Storage or 
Amazon S3 with filters 

 Instead, we use pre-filtered data
and compare with unfiltered data

We assume storage with: (a) scalable I/O, and 
(b) enough processing power for filtering
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Diversion:
Do we have enough processing power?

 Row & Column filtering in Java: ~100MBytes/sec per core

 Scales linearly with multiple cores

 ≤2 cores for filtering enough for all but 1 job

 Runtime always reduces runtime, even with fewer cores

 Performance dominated by string input/output, not filter

 Column filtering in optimized C:   5-17x faster than Java
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Runtime benefits
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30-80% reduction in runtime

Runtime reductions less than selectivity 

due to Hadoop overheads
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Conclusions

Hadoop in the cloud: 
separation of storage and compute.

 Rhea minimizes transfers from 
storage to compute
 Uses static analysis on the job bytecode

 Extracts selection and projection operators from code

 Generates filters to run in the storage layer

 Runs transparently to user (and is safe for provider)

 Potential benefits to the user (time, money) and 
cloud provider (bandwidth)
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