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Cluster design for data analytics:
[Traditional] Collocate storage & compute
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- Hadoop & MapReduce, Dryad/DryadLing, Scope, etc



Cloud Analytics: Hadoop in the Cloud
Separate storage and compute
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Azure Storage Azure Compute
Amazon S3 Amazon EC2
Examples:

O Hadoop on Azure
O Amazon'’s Elastic MapReduce



Cloud Analytics: Hadoop in the Cloud
Separate storage and compute
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Azure Storage  Bottleneck
Amazon S3

=

Azure Compute
Amazon EC2
Why separate storage from compute?

+ (User) Don't pay for compute just to keep data alive

+ (User) Offload storage management to operator

+ (Operator) Evolve compute & storage independently

+ (Operator) Offer services that do not require both

- Network between storage and compute is limited
(see paper for details)



Problem: Transfer lots of data ...
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Problem: Transfer lots of data ...
.. even when only a subset is needed
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Problem: Transter lots of data ...
...even when only a subset is needed
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Scenario

- Apache Hadoop (Map/Reduce)
- Input data in storage service

- Hadoop running in compute service
- Unstructured data:

- text, log files, etc
Goal

Transparently reduce data transfers
from storage to compute



How to minimize transfers?

Strawman: Can we execute mappers on storage nodes?
- Intuition: Mappers throw away a lot of data

»Data reduction not guaranteed

= Difficult to stop mappers during storage overload

»Storage nodes have to execute complicated logic
(Hadoop system & protocol)

»Dependencies on runtime environment, libraries, etc

» Better approach: Filter unnecessary data at storage nodes

« Filters need to be opportunistic and transparent
l.e. can kill/restart at any time (e.g. during overload)

« Filters need to be correct
.e. always preserve correctness of computation



Challenge: How to filter the data?

Recall: data are typically unstructured text
- No external source of structure/schema

Insight:
- The data analytic job knows structure
- ... and what needs to be filtered



[dea: static analysis of job bytecode

public void map(... value ..) ERTTTRVEINITE

{
String[] entries = value.toString().split("\t");

String articleName = entries[O];
String pointType = entries[1];
String geoPoint = entries[2];

Projection operation

» 3 “columns” interesting
(out of 4 for this job)

if (GEO_RSS_URI.equals(pointType)) { Selection operation

= roughly 1/3 of rows are
of the interesting type

"selects”/"projects”
implicit in Java byte code

outputCollector.collect(geoLocationKey, geoLocationName);

) :




Rhea

- Static analysis of Java byte code
- Extract row (select) & column (project) filters

- as executable Java methods
+ column filters can also be C, regular expressions, etc.

- Filters are conservative:

- May accept more data than strictly necessary

- Filters are opportunistic

- kill/restart at any time (e.g. during storage overload)

- Filters are transparent

- no change to Hadoop job 12



Rhea's Architecture
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Rhea's Architecture




Filters: Identity bits of data that
affect output of mapper

- Row Filters:

- Given an input row:
Does it lead to output?

- Row corresponds to one invocation of map

- Approach: Path Slicing
- Challenge: Deal with mutable state

- Column Filters:

- Given a row that leads to output:
Which substrings of the row affect output?

- Approach: Abstract interpretation
- Challenge: Deal with loops



Row Filter Generation via Path Slicing

public void map(... value ...)

{ 1. Tag “observable” instructions
String[] entries = value.toString().split("\t"); 2 Ident'fy path Cond't.'ons th?t
lead to observable instructions
String pointType = entries[1]; 3.  Perform dataflow analysis to
- identify all instructions that
, ) affect path conditions
if (GEO_RSS_URIl.equals(pointType)) { 4 Emit code

$

public boolean filter(Text bcvar2) {
String[] bevar5 = bevar2.toString().split("\t");
String bevar7 = bevar5[1];
boolean irvar0_1 =
. GEO_RSS_URIl.equals(bcvar7);
outputCollector.collect(geoLocationKey, if (irvar0_1 == 1) { return true; }
geolLocationName); return false;

b} }



Challenge: Taming State

- Map-Reduce program are often NOT pure functions
=>» M/R programmers use state (i.e. objects in heap):
- ... to avoid frequent initializations
* ... to pass job parameters
- ... to optimize temporary storage (e.g. with dictionaries)

- Filters cannot rely on mutable state:
- Recall: output of filtered data = output of original data

+ Solution: Tag all access to mutable fields as “observable”
(i.e. output) instructions.



Column Filter Generation (aka projects)
- Goal: Identify substrings that affect output

- Based on abstract interpretation

- Captures common patterns for “reading” fields:
e.g. string tokenizers, regular expressions, etc.

+ Guarantees termination by using numerical constraints
* Important to deal with loops

- Qutput:

- Tokenization method and se
- List of indices of interesting t




Experimental setup

-Hadoop on Azure:
-Input data in Azure Storage
-Compute on Azure Compute

-8 jobs with both code and data
-200 jobs code only (in paper)

-Same data-center
-Also, cross data-center (in paper)




Job Selectivity
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Many jobs are very selective ...
either on rows, columns, or both
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Job Selectivity

Rows + Columns
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High selectivity =»

less bytes to transfer

v Good for operators

v Cheaper for users
for cross-data centers
scenarios [see paper]
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reduce runtime

Many jobs are very selective ...
v Good for users Y 4

either on rows, columns, or both
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Measuring runtime benetfits

- We cannot extend Azure Storage or
Amazon S3 with filters &

- Instead, we use pre-filtered data
and compare with unfiltered data

- We assume storage with: (a) scalable 1/0, and
(b) enough processing power for filtering



Diversion:
Do we have enough processing power?

+ Row & Column filtering in Java: ~100MBytes/sec per core
- Scales linearly with multiple cores

+ <2 cores for filtering enough for all but 1job
- Runtime always reduces runtime, even with fewer cores

+ Performance dominated by string input/output, not filter
- Column filtering in optimized C:  5-17x faster than Java



Runtime benefits
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(130-80% reduction in runtime
JRuntime reductions less than selectivity
due to Hadoop overheads
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Conclusions

- Hadoop in the cloud:
separation of storage and compute.

- Rhea minimizes transfers from

storage to compute

- Uses static analysis on the job bytecode

- Extracts selection and projection operators from code
- Generates filters to run in the storage layer

- Runs transparently to user (and is safe for provider)

- Potential benefits to the user (time, money) and
cloud provider (bandwidth)
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