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Sybils in Online Social Networks

 Sybil (sibal): fake identities controlled by attackers
— Friendship is a pre-cursor to other malicious activities
— Does not include benign fakes (secondary accounts)

Q l‘ Home Gang @&:c ¢

Friend Requests 20 Mutual Friends ettings

#
W Not Now

‘ -
vi

20 mutual friends

« Large Sybil populations’

14.3 Million Sybils (August, 2012)

20 Million Sybils (April, 2013)

*Numbers from CNN 2012, NYT 2013



Sybil Attack: a Serious Threat
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* Social spam
— Advertisement, malware, phishing

ovies wsith yor ass in it.

e Steal user information ﬂ

\Epies used Facebook to steal Nato chiefs’ details

Taliban uses sexy Facebook profiles to lure troops into
giving away military secrets

* Sybil-based political lobbying efforts 3

Fake Twitter Accounts? Obama’s
Political Group Pushes Gun Control

Ericka Andersen  February 26, 2013 at 10:45am  (19) FiLike

Russian Twitter political protests ‘'swamped
by spam’ LSS




Sybil Defense: Cat-and-Mouse Game
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Crowdsourcing CAPTCHA solving
« [USENIX"10]

Realistic profile generation

« Complete bio info, profile pic
[WWW'12]




Graph-based Sybil Detectors

* A key assumption
— Sybils have difficulty “friending” normal users

— Sybils form tight-knit communities

* Measuring Sybils in Renren social network [IMC'11]
— Ground-truth 560K Sybils collected over 3 years
— Most Sybils befriend real users, integrate into real-user communities
— Most Sybils don’t befriend other Sybils

Sybils don’t need to form communities!
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Sybil Detection Without Graphs

* Sybil detection with static profiles analysis [NDSS'13]
— Leverage human intuition to detect fake profiles (crowdsourcing)
— Successful user-study shows it scales well with high accuracy

e Profile-based detection has limitations
— Some profiles are easy to mimic (e.g. CEO profile m)
— Information can be found online

A new direction: look at what users do!
— How users browse/click social network pages

— Build user behavior models using clickstreams



Clickstreams and User Behaviors

 Clickstream: a list of server-side user-generated events
— E.g. profile load, link follow, photo browse, friend invite

345678 Send Friend Request_23908 1303022295242
214567 Visit Profile_12344 1300784205886

e Intuition: Sybil users act differently from normal users
— Goal-oriented: concentrate on specific actions
— Time-limited: fast event generation (small inter-arrival time)

Analyze ground-truth clickstreams for Sybil detection



Outline

* Clickstream Similarity Graph
— Ground-truth Dataset

— Modeling User Clickstreams

— Generating Behavioral Clusters

 Real-time Sybil Detection



Ground-truth Dataset

* Renren Social Network VN
— A large online social network in China (280M+ users) e

renren
— Chinese Facebook

 Qround-truth
— Ground-truth provided by Renren’s security team
— 16K users, clickstreams over two months in 2011, 6.8M clicks

Dataset Users Sessions Clicks Date (2011)
Sybil 9,994 113,595 1,008,031 Feb.28-Apr.30
Normal 5,998 467,179 5,856,941 Mar.31-Apr.30

*Our study is IRB approved.



Basic Analysis: Click Transitions

* Normal users use many social network features
* Sybils focus on a few actions (e.g. friend invite, browse profiles)
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Sybils and normal users have very different click patterns!

Profiles
46% Profiles .
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|dentifying Sybils From Normal Users

* Goal: quantity the differences in user behaviors
— Measure the similarity between user clickstreams

* Approach: map user’s clickstreams to a similarity graph
— Clickstreams are nodes
— Edge-weights indicate the similarity of two clickstreams

 Clusters in the similarity graph capture user behaviors
— Each cluster represents certain type of click/behavior pattern
— Hypothesis: Sybils and normal users fall into different clusters



Model Training Detection
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Capturing User Clickstreams
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1. Click Sequence Model: order of click events
— e.g. ABCDA ...

2. Time-based Model: sequence of inter-arrival time
— e.g. {ty, by, ts, ...}

3. Complete Model: sequence of click events with time
— e.g. A(t)B(t)C(t)D(EA ...
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Clickstream Similarity Functions

« Similarity of sequences
— Common subsequence

O

S,= AAB
S.= AAC

—>

ngram,= {A, B, AA, AB, AAB) _ngram,; &ngram,

D.., =
ngram,= {A, G, AA, AC, AAC} [ | ~Y?

ngram, | ngram,

— Common subsequence with counts

Euclidean Distance

S,= AAB
S.= AAC

—>

ngraml= {A(2), B(1), AA(1), AB(1), AAB(1))
ngrama= {A(2), C(1), AA(1), AC(1), AAC(1)}

> V,=(2,1,0,1,0,1,1,0)
V,=(2,0,1,1,1,0,0,1)

« Adding “time” to the sequence

— Bucketize inter-arrival time, encode time into the sequence

— Apply the same sequence similarity function



Clickstream Clusteri
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* Similarity graph (fully-connected) :ﬁ] E> Cé%

— Nodes: user’s clickstreams >

— Edges: weighted by the similarity score of two users’ clickstreams

 Clustering similar clickstreams together
— Minimum edge weight cut
— Graph partitioning using METIS

« Perform clustering on ground-truth data
— Complete model produces very accurate behavior clusters
— 3% false negatives and 1% false positives

Sybils in normal clusters Normal users in Sybil clusters 15



Outline

 Real-time Sybil Detection
— Sybil Detection Using Similarity Graph
— Unsupervised Approach



Detection in a Nutshell

New Clickstreams Clustered Similarity Graph
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* Sybil detection methodology
— Assign the unclassified clickstream to the “nearest” cluster

— If the nearest cluster is a Sybil cluster, then the user is a Sybil

 Assigning clickstreams to clusters
— K nearest neighbor (KNN)
— Nearest cluster (NC)

— Nearest cluster with center (NCC) Fastest. scalable
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Detection Evaluation

Split 12K clickstreams into training and testing datasets
— Train initial clusters with 3K Sybil + 3K normal users

— Classity remaining 6K testing clickstreams

Error Rate
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(Semi) unsupervised Approach

« What if we don’t have a big ground-truth dataset?
— Need a method to label clusters

* Use a (small) set of known-good users to color clusters
— Adding known users to existing clusters

— Clusters that contain good users are “good” clusters




Real-world Experiments

* Deploy system prototypes onto social networks
— Shipped our prototype code to Renren and LinkedIn
— All user data remained on-site

Link dm « Scanned 40K ground-truth user’s clickstreams
InKe « Flagged 200 previous unknown Sybils

 Scanned 1M user’s clickstreams
‘A'A' renren Flagged 22K suspicious users

e |dentified a new attack

{

‘Image” Spammers

Embed spam content in images
Easy to evade text/URL based detectors
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Evasion and Challenges

 In order to evade our system, Sybils may ...

— Slow down their click speed Force Sybils to

— Generate “normal” actions as cover traffic mimic normal users

 Practical challenges

— How to update behavior clusters over time (incrementally)?

— How to integrate with other existing detection techniques?
(e.g. profile, content based detectors)

21



©,

Thank You!

Questions?

A



