SPFS: On Stacking
a Persistent Memory File System

on Legacy File Systems

Hobin Wool, Daegyu Han?, Seungjoon Hal, Sam H. Noh3#, Beomseok Nam?

Samsung Electronicst, SungKyunKwan University?, UNIST3, Virginia Tech?

= Persistent Memory (PMEM)

« Low access latency

 Byte-addressability

DRAM

 Persistency

Cost Latency

PMEM
= Intel® Optane™ DCPMM

* First commercialized PMEM product

NAND SSD

HDD

« High-capacity and low latency

 Intermediate layer between DRAM and SSD Capacity
« Killed in 2022

= Alternatives Products: NVDIMM, MRAM, CXL, ---)

= File systems for tiered storage - PMEM and conventional block storage

- High performance Monolithic FS

Block
Storage

« Low-cost capacity
PMEM

= Ziggurat, Strata: Monolithic file system

- Limitations of managing all types of storage in a single file system

« Reinventing features of mature file systems
(VFS cache, I/O scheduling, LFS, ---)

« Complexity of handling multiple types of storage
 Impractical deployment

Q: Can we reuse file systems that have been improved for decades?

A: Stackable File System: modular, practical

Stackable PMEM FS :|

Block Storage FS

= SPFS (Stackable Persistent Memory File System”)

« Modular approach to storage tiering

« Provide PMEM as persistent write-cache to PMEM-oblivious file systems

= SPFS+x : SPFS can be placed on top of any file system x (EXT4, F2FS, XFS,---)

= Goal:

« Absorb small synchronous writes " SPFS

Page Cache(DRAM)

Order-preserving small writes

Small PMEM

. LegacyDiskcbased s, Large DIsK

Block Layer Many desirable mature features

*: Available at https://github.com/DICL/spfs

5

SPFS Challenges

= As a stackable file system, SPFS must be lightweight

= SPFS must be effective in classifying and absorbing synchronous writes

Novel Designs of SPFS

= As a stackable file system, SPFS must be lightweight

— Manages all metadata in lightweight and efficient hash tables

— Novel Extent Hashing algorithm

= SPFS must be effective in classifying and absorbing synchronous writes

— Lazy Sync Point Profiler

= SPFS+x improves performance of x by ~9.9x for synchronous workloads

SPFS

Sync Point Profiler

Contribution #1

Sync Point Profiler

How is the profiler of SPFS different from the state-of-the-art?

Lazy Sync Point Profiler

= Profiler comparison

Ziggurat SPFS

Profiling Focus Write size Synchronicity
Bytes written between
Metric Individual write size consecutive fsync() calls
on the same file
Tendency Lazy
Workload Sync. Async. Sync. Async.
Large writes PMEM Disk PMEM Disk
Small writes PMEM PMEM PMEM Disk

= VFS cache is better for asynchronous writes

« Can not resolve synchronous small writes

= SPFS focuses on synchronicity 9

Example: Eager Write Point Profiling vs. Lazy Sync Point Profiling

= Ziggurat

Small 1O detected
——w(a) Fw() HG WO RE DA

: nop , NOp |

VFS Fails to leverage faster VFS cache
Cache |

v

v v
PMEMé B/ C7 CW

Disk

(a) Write Point Profiler

10

Example: Eager Write Point Profiling vs. Lazy Sync Point Profiling

= Ziggurat = SPFS

Small 10 detected
Small 10 detected Large cumulated 10 detected |

—winrw(e) {ED-WOHED-we) ——wwwe) HED-wo-E-wie >

! nop nop : ' v !

YFS Fails to leverage faster VFS cache vFS é B, Benefit from VFS Cache

Cache . v v Cache -\ ' v

PMEM B C C'/ FSave small PMEM space (A) B | c'\}
r e \ 2 \

Disk Disk or B> ¢/

(a) Write Point Profiler (b) Sync Point Profiler

11

Migration to Lower File System

= Promotion may degrade performance if access pattern changes to

e read-intensive

« large non-transactional writes

= Sync Factor (SF)
« Small value if I/O pattern does not meet the criteria for small sync. writes

SF; = a-weight(I0_type) + (1 —a) - SF;_4

{
Attenuation factor 0:read-intensive, large update
O<a<1) C: otherwise

= SPFS benefits from VFS cache by demoting read-intensive files to x
12

Contribution #2

Extent Hashing

SPFS is the first file system that manages
all metadata including extents using a hash table

oy
-0
E ©
o
X
A ©
-

SPFS

PMEM Dynamic Region
Block Bitmap Table

Extent Table

Name2lnode Table

13

Extent Hashing

= Challenge: How to hash extent (i.e., range data)

« Suppose extent E(start 3,length 7), hash function H(x) = x

: 071]2[3]74]5[6[7[87]9
Too many hashentries =TT 11T T T 13
0-2 Extent 3-9

] Legacy Block Hashing (HashFS)
= Extent Hashing

« Bound the number of entries to 0(log, B)
« 0(1) for best case

5167

<00

3|4

VI

0-2 Extent 3-9
Extent Hashing

0
—3

14

Extent Hashing: Insert

* Insert
« Store pointers according to the binary representation of keys in the range

« Stride length
o 2TNZ(key): Maximum distance to next pointer from the current key
« TNZ(x)
* Trailing Number of Zero bits of x
. e.g.,TNZ(11,) = 0,TNZ(100,) = 2,TNZ(1010;) = 1

= Example
20 21 22

10000,{0001{0010{0011{0100{0101|0110/0111|1000
I ' = # pointers:8— 4
Key Range: 1-8 15

Extent Hashing: Search

= Search

- while (search(query key))
Flip the rightmost non-zero bit of query key

= Example: Find an extent 7(0111,) belongs to

10000, 0001{0010|0011{0100(0101|0110({0111{1000

I I IHit Miss Miss I

Key Range: 1-8

= Search Cost: O(log, B) 16

Evaluation

Experimental Setup

= Evaluation machines

Server Virtual Processor DRAM PMEM SSD
DCPMM) Dual Intel Xeon Gold 5215 | 128 GB 256 (128x2) GB 2 TB Samsung 860 EVO
(10 cores, 2.50 GHz) DDR4 | Intel Optane DCPMM mSATA SSD
Dual Intel Xeon Gold 5218 | 32 GB 16 GB 512 GB Samsung 970
NVDIMM-N | QEMU (16 cores, 2.30 GHz) DDR4 | Dell EMC NVDIMM-N NVMe SSD

. »¢ Note: Evaluations performed on the NVDIMM-N server
= File System Setup are marked with (NVDIMM-N) in the title

« Default mount option

. EXT4, F2FS, XFS: SSD

- NOVA: PMEM (DCPMM or NVDIMM-N)

e Ziggurat: PMEM + SSD

« SPFS+x: PMEM + x (EXT4, F2FS, XFS) 18

Extent Hashing: Comparison of file mapping structures

= 8000 256 MB files (KMEM-DAX)
906 X than ExtentTree

o 10 7
) = BlockHash @6 - ExtentTree —
238 > ExtentTree | 2 _| - -v ExtentHash |
o -v- ExtentHash 3‘5 -85 BlockHash
= 6 N S 4 ~- FastLookup
2y Benefit of fewer pointer ~ 3 §
O Q2]
> 2 > e =]
YV Vv Vv Vv VvV : —
W 05 e 256 1024 496 0 4 16 64 256 1024 4096
Extent Size (KB) Extent Size (KB)
(a) Insert (b) Search (Random)

= ExtentTree: Per-file, FAST and FAIR B+tree
= ExtentHash: Global, based on CCEH
= BlockHash: Global, ExtentHash stride=1, no log-scale search (same as HashFS)

Performance Effect of Stacking SPFS on X

= Mix of buffered 1/0 (BIO) and direct I/O(DIO) - fileserver workload

O

) e

600

N
-]
-

Throughput (Kops/sec)

SPES+EXT4 -¥

o ——— — e ——

_« SPFS+x : benefit from steering BIO and DIO to the right device

Ziggurat —%-
F2FS =

x % — NOVA & Ziggurat: Insensitive to BIO/DIO

~ x: Suffer from DIO

S e —

——a @ g

0 20 40 60 380 100

Proportion of Direct I/O

= SPFS+x benefits from the device-aware stackable design

« Steers BIOs to the lower file system while absorbing the DIOs in DCPMM

20

Experiments with FIU Trace (small NVDIMM-N)

= Replay transactional traces of FIU: Moodle, Usrl, Usr2

)
)

SE€C
(MY
o O
o O
o O

Replay Time (
o &5 O
S

G

Open REEX

Close =22

" Cras

{}.A
-
ﬂ-
<
8
+
79
Ly
a®
75

~~

F2FS 37
SPFS+F2F2 [

XFS 7
SPFS+XFS |2

Ziggurat

a) moodle

Read

350
300
250
200
150
100
50
0

SN

Fsync
I W N -
| & 2.4°X .« Crash/
m{ku:M |
16 EREE e
Tt g
LY
MY
+ 7 2 ﬁ
P [e
7
5 @
(b) usrl

Fallocate

140
120
100
80
60
40
20
0

ﬁ_\—

U1
{

SPFS+EXT4 [l<: X

_l_l_

EXT4 PO

XFS e

F2FS [20 98
SPFS+XFS pi

SPFS+F2F2 [
Ziggurat [t | | | |

(c) usr2

21

Conclusion

= We designhed and implemented SPFS

« A stackable file system for PMEM
 Absorb order-preserving small synchronous writes
 Take advantage of the legacy block device file systems
* Provide faster DRAM cache and large capacity

« Manage all file system metadata in dynamic hash tables
« Novel Extent Hashing

= SPFS+x Improves performance of lower file system x by up to 9.9 x

22

Thank You :)

Questions?

hobin.woo@samsung.com

hdg9400@skku.edu
23

	기본 구역
	슬라이드 1: SPFS: On Stacking a Persistent Memory File System on Legacy File Systems

	Background
	슬라이드 2: Background

	Motivation
	슬라이드 3: Motivation
	슬라이드 4: Motivation

	SPFS
	슬라이드 5: SPFS

	Challenges & Novel Design
	슬라이드 6: SPFS Challenges
	슬라이드 7: Novel Designs of SPFS

	Sync Point Profiler
	슬라이드 8: Contribution #1 Sync Point Profiler
	슬라이드 9: Lazy Sync Point Profiler
	슬라이드 10: Example: Eager Write Point Profiling vs. Lazy Sync Point Profiling
	슬라이드 11: Example: Eager Write Point Profiling vs. Lazy Sync Point Profiling
	슬라이드 12: Migration to Lower File System

	Extent Hashing
	슬라이드 13: Contribution #2 Extent Hashing
	슬라이드 14: Extent Hashing
	슬라이드 15: Extent Hashing: Insert
	슬라이드 16: Extent Hashing: Search

	Evaluation
	슬라이드 17: Evaluation
	슬라이드 18: Experimental Setup
	슬라이드 19: Extent Hashing: Comparison of file mapping structures
	슬라이드 20: Performance Effect of Stacking SPFS on x
	슬라이드 21: Experiments with FIU Trace (small NVDIMM-N)

	Conclusion
	슬라이드 22: Conclusion

	Q&A
	슬라이드 23: Thank You :)

