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Motivation

• Launch times remain an important problem
• The performance of flash storage does not always come up to expectations

• The use of QLC SSDs extends the launch time significantly compared to TLC SSDs
• Blade and Soul: 91s  114s, Horizon Zero Dawn: 15.7s  21.4s
• Windows 10 boot: 27.3s  35.1s, Visual Studio: 7.0s  8.3s

• Cost-effective architecture such as DRAM-less SSD exhibits slow access performance

• Application launches are rarely able to exploit hardware-level parallelism

Eclipse
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Application Prefetcher

Memory Management

I/O Scheduler

Related Works to Expedite Application Launch

Hybrid SSD
Intel H20 (Optane + QLC), Enmotus MiDrive (SLC + QLC),
Solidigm P41+ (pSLC + QLC)

Preload, Windows Superfetch, Falcon [Mobisys’12]

FastTrack [ATC’18], BFQ I/O Scheduler [Systor’12]

Marvin [ATC’20], Acclaim [ATC’20]

• Windows Prefetcher (since Windows XP)
• Customized for HDDs
• File-level sorting
• Defragment blocks (every 3 days)

• GSoC Prefetch (Linux)
• Similar to Windows Prefetch
• Selected for the Google Summer of Code 2007

• FAST (Linux) [FAST ’11]
• Customized for SSDs
• I/O-level monitoring (using blktrace)
• Creates a prefetch program that loads monitored I/Os

into disk caches
• Threaded prefetching

Predictive Disk Prefetcher

Flash Cache
Intel Turbo Memory, Intel Smart Response Technology, 
Enmotus FuzeDrive, DM-Cache, Bcache
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• Launch times depend on the previous state of the system, especially the 
disk cache

• A cold start occurs when the disk cache contains none of the data required 
by the application

• A system cold start occurs when there is no user-launched app

• A warm start occurs when the disk cache contains all the requested data 
during the launch of an app

Launch Scenarios: Cold Start vs. Warm Start
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• Learning phase: monitor disk reads and page faults during the first launch 
of an application

• Prefetch phase: stored information is used to accelerate loading during a 
subsequent launch of the application

Paralfetch: Application Prefetcher

(a) Cold start scenario without prefetch

(b) Cold start scenario with prefetch
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• Accurate collection of launch-related disk blocks
• Pre-scheduling of these blocks to enhance prefetch throughput
• Parallelized execution: overlapping application execution with disk prefetching

Fundamental Challenges
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Overall Architecture of Paralfetch

gimp-2.10.pf

Buffer-cached prefetch entry: {dev #, inode # (0), start block number, length (byte)}
Page-cached prefetch entry: {dev #, inode #, in-file offset (page), length (page)}

■ Invalidate disk caches
■ Create a learning thread

(wake up after trace timeout sec.)
■ Load and execute binary

■ Trace missing metadata

Page fault and SSD read events

<app_name>.pf file

■ Load the corresponding .pf file
■ Create a prefetch thread
■ Load and execute binary

■ Threaded prefetching

Dynamic scheduling
■ Range merge
■Metadata shift

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

■ Determine launch phase

Pre-scheduling

Parallelized execution 
Accurate
tracing1

2

3

■ Range merge
■ Metadata shift

If prefetching is slow
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Update

Log entries
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Overall Architecture of Paralfetch
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• Accurate tracing is essential for better launch performance
• Unfortunately, disk cache invalidation is not perfect!

• Page cache pages in “dirty, under-writeback, mapped into page tables” states are not 
invalidated

• Slab objects (for caching metadata) with “reference count > 0” are not invalidated

• Solutions
• Syncing before I/O tracing to flush dirty, under-writeback blocks
• Page fault monitoring to detect missing page cache blocks (for regular files)
• Finding missing metadata blocks: a file system-level dependency check to identify 

launch-related metadata blocks (i.e., inode and extent blocks) that have not been 
traced but have dependency on traced data blocks

Accurate Tracing
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• ext4_fiemap function is used to get file extent mappings (lba extents for file 
block range)

• ext4_fiemap naturally accesses associated metadata blocks
• Unlike ext4_fiemap, ext4_fiedep returns not only file extent mappings but 

also their associated metadata blocks

Accurate Tracing

ext4_fiedep is called for each log entry for regular files

inode
Block

File 
Extent 1

File
Extent 2

Extent
Block 1

Extent
Block 2

FS-Level Block Dependency

Returned by ext4_fiemap()

Returned by ext4_fiedep()
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• Comparison of Paralfetch and FAST ’11 launch times on a laptop
• EXT3 file system is used
• Tracing of each application is performed when LibreOffice Writer is running

Accurate Tracing
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Accurate Tracing
Still misses a few

Missing metadata
detection
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Overall Architecture of Paralfetch
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• Slow prefetching is often the bottleneck in a launch
• Solutions: exploiting internal parallelism of SSDs

• Metadata shifting to increase the number of concurrently issued I/Os
• Range merging to merge LBA-consecutive I/Os nearby into a single large one

CrystalDiskMark
(Samsung 860 QVO 1TB)

Range merging

Metadata shifting

SSD Internals

Pre-scheduling

NAND 
Flash Chips

Controller

DRAM

512KB 
(QD1)

4KB
(QD1)

4KB
(QD32)

429.1

36.86

308.8

Read (MB/s)



15

• Metadata shifting to boost the 
number of I/O requests in the   
command queue

• Shift size controls the size of 
metadata blocks to be left-shifted.

Pre-scheduling: Metadata Shifting
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File 1:
inode
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File 1:
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Command queue is empty due to prefetch dependency
even if asynchronous prefetching function is used

File 2:
inode block 

(a) Original prefetch sequence

File 1:
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(b) Prefetch sequence after shifting metadata with a shift size of 4KB

File 1:
inode block

File 1:
data block 1

File 1:
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File data I/O
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• Range merging to merge I/O requests 
nearby into a large one, improving I/O 
throughput

Pre-scheduling: Range Merging

(a) Original prefetch sequence

[2] 1, 5, 8 [5] 1, 13, 2[3] 0, 16, 1 [4] 0, 20, 1 [7] 0, 17, 1[6] 2, 22, 3

[2] 1, 5, 10 [3] 0, 16, 1 [4] 0, 20, 1 [6] 2, 22, 3

(b) Prefetch sequence after range merge with an I/O distance threshold of 3

Metadata I/O

File data I/O

[1] 0, 3, 1

[1] 0, 3, 1

Starting block number (LBA)

Prefetch size
(blocks)

Sequence
number

LBA-contiguous (I/O distance = 5 - 2)

LBA-contiguous (I/O distance: sequence number difference between merge candidates = 7 - 3)

Merge: I/O distance between contiguous blocks (3) ≤ I/O distance threshold (3)

[7] 0, 17, 1

inode
number
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Overall Architecture of Paralfetch
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• The parallel utilization of CPU and SSD is key to the reduction of application launch time
• However, aggressive prefetching can negatively affect a launch performance

• SSD-level (i.e., controller) I/O reordering
• I/O contentions between the prefetch thread and the launching app

Overlapping Application Execution with Prefetching

Aggressive prefetching slows down an application launch
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Evaluation

Even with aggressive dynamic scheduling, it is challenging to achieve 
prefetch time close to warm start time

For CPU-intensive apps, Paralfetch achieves 
performance close to warm start 
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• Three fundamental challenges in threaded prefetching methods
• Accurate tracing

• Missing metadata detection and page fault monitoring

• Pre-scheduling
• Range merging and metadata shifting

• Overlapping application execution with disk prefetching
• Optimization strength control

• Implementation and evaluation of Paralfetch
• Negligible overhead in terms of CPU, memory, and storage
• Launch performance close to the warm start scenario in most cases

Summary
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Appendix
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• Paralfetch still misses a few I/O reads.
• Missing metadata detection should fail to detect metadata-only I/O reads

• lstat() system call

• Office/IDE tools usually read a user’s home directory which changes often.
• Program or library updates

[A-1] Accurate Tracing
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• An application and libraries update often.
• To handle this issue, Paralfetch handles incorrect prefetch entries.

• A daemon periodically removes obsolete prefetch entries in <app_name>.pf files.
• If the regular file of the prefetch entry was not accessed after the <app_name>.pf file.

[A-2] Accurate Tracing
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• Solutions
• To find the best thresholds for the metadata shifting and range merging, Paralfetch gradually 

increases the level of optimization if prefetching is not effective.

• Paralfetch detects a prefetch-bottleneck situation based on the number of context switches 
made by the launching application during the prefetching period.

• i.e., the quantity of context switches is above a user-defined threshold (by default, 5% of the number of 
prefetch entries)

[A-3] Overlapping Application Execution with Prefetching
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• Tracing overhead
• I/O logging overhead of 136ms for Android Studio

• Pre-scheduling (background job)
• Between 42ms for VLC player and 153ms for Android Studio (c.f., FAST took 23 

seconds to generate the prefetch program for Eclipse)

• Space overhead
• 672KB to store <app_name>.pf files for 16 applications (c.f., 8.2MB with FAST)

[A-4] Overhead (On a Laptop PC)
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[A-5] Paralfetch on HDDs (On a Laptop PC)

• Sorted prefetch + threaded prefetch
• Pre-scheduling: LBA-sorted prefetching + infill merge
• Dynamic scheduling: threaded prefetch for late-deadline blocks
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