
Fast Application Launch on Personal
Computing/Communication Devices

Junhee Ryu, Dongeun Lee, Kang G. Shin, Kyungtae Kang

USENIX FAST ‘23

The first author works at SK Hynix, but this work was done as a personal interest.

2

Motivation

• Launch times remain an important problem
• The performance of flash storage does not always come up to expectations

• The use of QLC SSDs extends the launch time significantly compared to TLC SSDs
• Blade and Soul: 91s 114s, Horizon Zero Dawn: 15.7s 21.4s
• Windows 10 boot: 27.3s 35.1s, Visual Studio: 7.0s 8.3s

• Cost-effective architecture such as DRAM-less SSD exhibits slow access performance

• Application launches are rarely able to exploit hardware-level parallelism

Eclipse

3

Application Prefetcher

Memory Management

I/O Scheduler

Related Works to Expedite Application Launch

Hybrid SSD
Intel H20 (Optane + QLC), Enmotus MiDrive (SLC + QLC),
Solidigm P41+ (pSLC + QLC)

Preload, Windows Superfetch, Falcon [Mobisys’12]

FastTrack [ATC’18], BFQ I/O Scheduler [Systor’12]

Marvin [ATC’20], Acclaim [ATC’20]

• Windows Prefetcher (since Windows XP)
• Customized for HDDs
• File-level sorting
• Defragment blocks (every 3 days)

• GSoC Prefetch (Linux)
• Similar to Windows Prefetch
• Selected for the Google Summer of Code 2007

• FAST (Linux) [FAST ’11]
• Customized for SSDs
• I/O-level monitoring (using blktrace)
• Creates a prefetch program that loads monitored I/Os

into disk caches
• Threaded prefetching

Predictive Disk Prefetcher

Flash Cache
Intel Turbo Memory, Intel Smart Response Technology,
Enmotus FuzeDrive, DM-Cache, Bcache

4

• Launch times depend on the previous state of the system, especially the
disk cache

• A cold start occurs when the disk cache contains none of the data required
by the application

• A system cold start occurs when there is no user-launched app

• A warm start occurs when the disk cache contains all the requested data
during the launch of an app

Launch Scenarios: Cold Start vs. Warm Start

5

• Learning phase: monitor disk reads and page faults during the first launch
of an application

• Prefetch phase: stored information is used to accelerate loading during a
subsequent launch of the application

Paralfetch: Application Prefetcher

(a) Cold start scenario without prefetch

(b) Cold start scenario with prefetch

S1

Prefetcher
thread

tlaunch0 Time

S4

S3

C3 C4C2

S2
Exploiting

internal
parallelism

of SSD

Create
thread

Time

C1

C2 C3 C4

tlaunch0 Time

Interrupt handler + Context switch

File system + Block layer + Device driver

S2S1 S3 S4C1

Binary loader starts

Binary loader starts Launch time reduction

Prefetch performs
with an idle CPU core

Exploiting
multiple cores

(b) Cold start scenario with prefetch

H1

tlaunch

0 Time

Head
Movement

C1 C2 C3 C4

(a) Cold start scenario without prefetch

H4

0 Time

H2 H1 C2 C3

Prefetching
(Sorted by LBA)

Binary loader starts

Application

H2 H3 H4

C4

Access
Time

Transfer
Time

tlaunch

C1H3
Launch time reduction

Sorted Prefetch for HDDs
Threaded Prefetch for SSDs

6

• Accurate collection of launch-related disk blocks
• Pre-scheduling of these blocks to enhance prefetch throughput
• Parallelized execution: overlapping application execution with disk prefetching

Fundamental Challenges

7

Overall Architecture of Paralfetch

gimp-2.10.pf

Buffer-cached prefetch entry: {dev #, inode # (0), start block number, length (byte)}
Page-cached prefetch entry: {dev #, inode #, in-file offset (page), length (page)}

■ Invalidate disk caches
■ Create a learning thread

(wake up after trace timeout sec.)
■ Load and execute binary

■ Trace missing metadata

Page fault and SSD read events

<app_name>.pf file

■ Load the corresponding .pf file
■ Create a prefetch thread
■ Load and execute binary

■ Threaded prefetching

Dynamic scheduling
■ Range merge
■Metadata shift

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

■ Determine launch phase

Pre-scheduling

Parallelized execution
Accurate
tracing1

2

3

■ Range merge
■ Metadata shift

If prefetching is slow

Learning
thread

Prefetch thread

Reschedule thread

Update

Log entries
(dev#, inode#, offset, size)

8

Overall Architecture of Paralfetch

gimp-2.10.pf

Buffer-cached prefetch entry: {dev #, inode # (0), start block number, length (byte)}
Page-cached prefetch entry: {dev #, inode #, in-file offset (page), length (page)}

■ Invalidate disk caches
■ Create a learning thread

(wake up after trace timeout sec.)
■ Load and execute binary

■ Trace missing metadata

Page fault and SSD read events

<app_name>.pf file

■ Load the corresponding .pf file
■ Create a prefetch thread
■ Load and execute binary

■ Threaded prefetching

Dynamic scheduling
■ Range merge
■Metadata shift

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

■ Determine launch phase

Pre-scheduling

Parallelized execution
Accurate
tracing1

2

3

■ Range merge
■ Metadata shift

If prefetching is slow

Learning
thread

Prefetch thread

Reschedule thread

Update

Log entries
(dev#, inode#, offset, size)

9

• Accurate tracing is essential for better launch performance
• Unfortunately, disk cache invalidation is not perfect!

• Page cache pages in “dirty, under-writeback, mapped into page tables” states are not
invalidated

• Slab objects (for caching metadata) with “reference count > 0” are not invalidated

• Solutions
• Syncing before I/O tracing to flush dirty, under-writeback blocks
• Page fault monitoring to detect missing page cache blocks (for regular files)
• Finding missing metadata blocks: a file system-level dependency check to identify

launch-related metadata blocks (i.e., inode and extent blocks) that have not been
traced but have dependency on traced data blocks

Accurate Tracing

10

• ext4_fiemap function is used to get file extent mappings (lba extents for file
block range)

• ext4_fiemap naturally accesses associated metadata blocks
• Unlike ext4_fiemap, ext4_fiedep returns not only file extent mappings but

also their associated metadata blocks

Accurate Tracing

ext4_fiedep is called for each log entry for regular files

inode
Block

File
Extent 1

File
Extent 2

Extent
Block 1

Extent
Block 2

FS-Level Block Dependency

Returned by ext4_fiemap()

Returned by ext4_fiedep()

11

• Comparison of Paralfetch and FAST ’11 launch times on a laptop
• EXT3 file system is used
• Tracing of each application is performed when LibreOffice Writer is running

Accurate Tracing

Android Studio Chromium
Browser

Eclipse Gimp Libreoffice
Impress

Cold Warm FAST Paralfetch (Pre-Scheduling) Paralfetch (Dynamic Scheduling)

N
or

m
al

iz
ed

La
un

ch
Ti

m
e

12.1s 2.1s 5.6s 2.6s 2.4s

10.0 MB
(206.3 MB)

24.1 MB
(134.7 MB)

28.9 MB
(72.0 MB)

13.4 MB
(42.8 MB)

56.1 MB
(86.7 MB)

Missed amount of blocks when Libreoffice Writer is running in the background
(Traced amount of blocks in a system-cold scenario)

Intel Core i5-8265 CPU
16 GB of RAM
Samsung 860 QVO 1TB QLC SSD

Results using FAST

12

Accurate Tracing
Still misses a few

Missing metadata
detection

13

Overall Architecture of Paralfetch

gimp-2.10.pf

Buffer-cached prefetch entry: {dev #, inode # (0), start block number, length (byte)}
Page-cached prefetch entry: {dev #, inode #, in-file offset (page), length (page)}

■ Invalidate disk caches
■ Create a learning thread

(wake up after trace timeout sec.)
■ Load and execute binary

■ Trace missing metadata

Page fault and SSD read events

<app_name>.pf file

■ Load the corresponding .pf file
■ Create a prefetch thread
■ Load and execute binary

■ Threaded prefetching

Dynamic scheduling
■ Range merge
■Metadata shift

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

■ Determine launch phase

Pre-scheduling

Parallelized execution
Accurate
tracing1

2

3

■ Range merge
■ Metadata shift

If prefetching is slow

Learning
thread

Prefetch thread

Reschedule thread

Update

Log entries
(dev#, inode#, offset, size)

14

• Slow prefetching is often the bottleneck in a launch
• Solutions: exploiting internal parallelism of SSDs

• Metadata shifting to increase the number of concurrently issued I/Os
• Range merging to merge LBA-consecutive I/Os nearby into a single large one

CrystalDiskMark
(Samsung 860 QVO 1TB)

Range merging

Metadata shifting

SSD Internals

Pre-scheduling

NAND
Flash Chips

Controller

DRAM

512KB
(QD1)

4KB
(QD1)

4KB
(QD32)

429.1

36.86

308.8

Read (MB/s)

15

• Metadata shifting to boost the
number of I/O requests in the
command queue

• Shift size controls the size of
metadata blocks to be left-shifted.

Pre-scheduling: Metadata Shifting

4K 32K 16K 4K

File 1:
inode
block

File 1:
data block 1

Command queue is empty due to prefetch dependency
even if asynchronous prefetching function is used

File 2:
inode block

(a) Original prefetch sequence

File 1:
data block 2

4K 32K 16K 4K

(b) Prefetch sequence after shifting metadata with a shift size of 4KB

File 1:
inode block

File 1:
data block 1

File 1:
data block 2

Prefetch dependencyI/O size

Metadata I/O

File data I/O

There are no prefetching-level dependencies among
buffer-cached (metadata) blocks

4K

4K

16

• Range merging to merge I/O requests
nearby into a large one, improving I/O
throughput

Pre-scheduling: Range Merging

(a) Original prefetch sequence

[2] 1, 5, 8 [5] 1, 13, 2[3] 0, 16, 1 [4] 0, 20, 1 [7] 0, 17, 1[6] 2, 22, 3

[2] 1, 5, 10 [3] 0, 16, 1 [4] 0, 20, 1 [6] 2, 22, 3

(b) Prefetch sequence after range merge with an I/O distance threshold of 3

Metadata I/O

File data I/O

[1] 0, 3, 1

[1] 0, 3, 1

Starting block number (LBA)

Prefetch size
(blocks)

Sequence
number

LBA-contiguous (I/O distance = 5 - 2)

LBA-contiguous (I/O distance: sequence number difference between merge candidates = 7 - 3)

Merge: I/O distance between contiguous blocks (3) ≤ I/O distance threshold (3)

[7] 0, 17, 1

inode
number

17

Overall Architecture of Paralfetch

gimp-2.10.pf

Buffer-cached prefetch entry: {dev #, inode # (0), start block number, length (byte)}
Page-cached prefetch entry: {dev #, inode #, in-file offset (page), length (page)}

■ Invalidate disk caches
■ Create a learning thread

(wake up after trace timeout sec.)
■ Load and execute binary

■ Trace missing metadata

Page fault and SSD read events

<app_name>.pf file

■ Load the corresponding .pf file
■ Create a prefetch thread
■ Load and execute binary

■ Threaded prefetching

Dynamic scheduling
■ Range merge
■Metadata shift

Binary loader (native Linux) or Zygote process (Android)

Learning phase
(first launch)

Prefetch phase
(subsequent launches)

■ Determine launch phase

Pre-scheduling

Parallelized execution
Accurate
tracing1

2

3

■ Range merge
■ Metadata shift

If prefetching is slow

Learning
thread

Prefetch thread

Reschedule thread

Update

Log entries
(dev#, inode#, offset, size)

18

• The parallel utilization of CPU and SSD is key to the reduction of application launch time
• However, aggressive prefetching can negatively affect a launch performance

• SSD-level (i.e., controller) I/O reordering
• I/O contentions between the prefetch thread and the launching app

Overlapping Application Execution with Prefetching

Aggressive prefetching slows down an application launch

19

Evaluation

Even with aggressive dynamic scheduling, it is challenging to achieve
prefetch time close to warm start time

For CPU-intensive apps, Paralfetch achieves
performance close to warm start

0
0.2
0.4
0.6
0.8

1

Frozen
Bubble

Gimp Libreoffice
Writer

Chromium
Browser

Scratch 2 Xpdf 0 A.D. Extreme
Tux Racer

LinCity Mindcraft Open
Arena

Quake 3
Arena

Xmoto Average

13.0s 15.7s 8.0s 9.0s 13.8s 1.3s 22.5s 12.1s 13.0s 3.7s 29.6s 28.0s 13.5s

N
or

m
al

iz
ed

 L
au

nc
h

Ti
m

e

0
0.2
0.4
0.6
0.8

1

Android
Studio

Chromium
Browser

Eclipse Gimp Libreoffice
Impress

Libreoffice
Writer

Okular Scribus VLC player Xilinx ISE Ancestors
Legacy

Atom
RPG

Battle
Tech

Pillars of
Eternity 2

Tyranny Witcher 3 Average

Cold Warm GSoC Prefetch Paralfetch (I/O and Page Fault Monitoring) Paralfetch (+Missing Metadata Detection) Paralfetch (+Pre-Scheduling) Paralfetch (+Dynamic Scheduling)

11.7s 2.0s 5.4s 2.5s 2.3s 2.1s 1.6s 3.8s 1.4s 7.2s 8.2s 15.6s 23.0s 32.0s 17.7s 14.0s

N
or

m
al

iz
ed

 L
au

nc
h

Ti
m

e

Laptop PC (Intel i5-8265, Samsung 860 QVO 1TB QLC SSD)

Raspberry Pi 3 (Samsung Class-10 16 GB MicroSD)

Google Pixel XL Smartphone results are shown in the paper.

0.51
0.74

0.54

0.88 0.73
0.69

0.56

20

• Three fundamental challenges in threaded prefetching methods
• Accurate tracing

• Missing metadata detection and page fault monitoring

• Pre-scheduling
• Range merging and metadata shifting

• Overlapping application execution with disk prefetching
• Optimization strength control

• Implementation and evaluation of Paralfetch
• Negligible overhead in terms of CPU, memory, and storage
• Launch performance close to the warm start scenario in most cases

Summary

21

Appendix

22

• Paralfetch still misses a few I/O reads.
• Missing metadata detection should fail to detect metadata-only I/O reads

• lstat() system call

• Office/IDE tools usually read a user’s home directory which changes often.
• Program or library updates

[A-1] Accurate Tracing

23

• An application and libraries update often.
• To handle this issue, Paralfetch handles incorrect prefetch entries.

• A daemon periodically removes obsolete prefetch entries in <app_name>.pf files.
• If the regular file of the prefetch entry was not accessed after the <app_name>.pf file.

[A-2] Accurate Tracing

24

• Solutions
• To find the best thresholds for the metadata shifting and range merging, Paralfetch gradually

increases the level of optimization if prefetching is not effective.

• Paralfetch detects a prefetch-bottleneck situation based on the number of context switches
made by the launching application during the prefetching period.

• i.e., the quantity of context switches is above a user-defined threshold (by default, 5% of the number of
prefetch entries)

[A-3] Overlapping Application Execution with Prefetching

25

• Tracing overhead
• I/O logging overhead of 136ms for Android Studio

• Pre-scheduling (background job)
• Between 42ms for VLC player and 153ms for Android Studio (c.f., FAST took 23

seconds to generate the prefetch program for Eclipse)

• Space overhead
• 672KB to store <app_name>.pf files for 16 applications (c.f., 8.2MB with FAST)

[A-4] Overhead (On a Laptop PC)

26

0
0.2
0.4
0.6
0.8

1

Android
Studio

Chromium
Browser

Eclipse Gimp Libreoffice
Impress

Libreoffice
Writer

Okular Scribus VLC
player

Xilinx ISE Battle
Tech

Ancestors
Legacy

Pillars of
Eternity 2

Witcher 3 Tyranny Atom
RPG

Average

Cold Warm GSoC Prefetch Paralfetch (Pre-Scheduling) Paralfetch (Dynamic Scheduling)

54.4s 15.6s 16.7s 9.3s 12.7s 13.0s 7.7s 16.8s 7.1s 15.0s 50.9s 34.2s 55.6s 35.4s 43.7s 43.3s
0.67

0.42

N
or

m
al

iz
ed

 L
au

nc
h

Ti
m

e

[A-5] Paralfetch on HDDs (On a Laptop PC)

• Sorted prefetch + threaded prefetch
• Pre-scheduling: LBA-sorted prefetching + infill merge
• Dynamic scheduling: threaded prefetch for late-deadline blocks

	슬라이드 번호 1
	 Motivation
	 Related Works to Expedite Application Launch
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	Appendix
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26

