
Citron: Distributed Range Lock
Management with One-sided RDMA

Jian Gao, Youyou Lu, Minhui Xie, Qing Wang, Jiwu Shu
Tsinghua University

FAST’23

Range Locks

Concurrency safety for accessing storage address space

2

Client Client Client

Storage
Address
Space

RDMA Network

Concurrency safety for

• CPU-based range lock manager with two-sided RDMA-based RPC
• Rely fully on server-side CPUs -> CPU bottleneck

3

Previous Approaches

Client
Server

Dedicated data structures

RPC request

Limited
resources

• Range lock = mutex (already solved!) * range size
• Excessive network roundtrips -> high latencies

4

One-sided Approach?

* Dong Young Yoon, et al. Distributed Lock Management with RDMA: Decentralization without Starvation. In SIGMOD’18.

one request many locks

• Combine multiple mutexes into a larger one
• Resource waste for small ranges leads to low throughput

5

One-sided Approach? (Cont.)

* Dong Young Yoon, et al. Distributed Lock Management with RDMA: Decentralization without Starvation. In SIGMOD’18.

one oversized lock one lock

Our One-sided Solution: Citron

effiCIent disTributed Range lOck maNager

6

The Big Picture

7

Data Structure

Citron

Ranges to mutexes

Segment Tree

Lock Protocol

Resolve conflicts

Extended atomics

The Segment Tree

A perfect tree whose each node represents a range.

8

root

Example: degree = 2

… … … … … … … …

Any range <-> O(log N) tree nodes

Map Ranges to Tree Nodes

9

Throughput-Optimal
+ Precise mapping
─ High latencies: O(log N) nodes,

tens in the worst case

Latency-Optimal
+ Lock only one node
─ Low throughput: false conflicts

Citron’s trade-off
Lock up to k nodes. k = 2 by default.

Selecting the Nodes Properly

Goal: minimize locked but unneeded range.

10

Method: Knapsack algorithm
Should I split here?

• Weight: # children
nodes to lock – 1

• Value: preciseness
improvement

k = 2 reduces false conflicts by 96% than k = 1

Lock Protocol - Theory

• Observation: Node X conflict only with ancestors and descendants

11

I want to lock
this node! Notification

+
Detection

Ancestors

Descendants

Desired node

Lock Protocol - Practice, i.e., Tasks

• Observation: Node X conflict only with ancestors and descendants

12

Ancestors

Descendants

Desired nodeLock the node

Notify

Notify

Detect

Detect

1

4 3

25

Lock Protocol - Tools

RDMA NICs nowadays support Extended Atomics.

13

Ext-CAS Ext-FAA

1 1 0 0 1 1 1 1 … 1 0 1
8 bytes

Manipulate leaf nodes
Set bit = locked, unset bit = unlocked

8 bytes

Manipulate internal nodes
Idea from Lamport’s bakery

Task 1 - Lock the Desired Node

• Leaf: Ext-CAS -- lock desired bits
• Internal:

• Enter bakery
mypos = rear++;

• Then wait for my turn
while (head != mypos);

14

ExtCAS
or

ExtFAA+
Read

Blue fields are members of
internal nodes.

Ancestors

Descendants

Desired node

• A 1-bit flag called occupied
• Blocks subsequent conflicts @ descendants
• occupied = 1;

15

ExtFAA
Set the

occupied flag

Task 2 - Notify Descendants

Ancestors

Descendants

Desired node

Another client’s Task 2:

• Read the occupied flag
• Wait for occupied ancestors

• while (ancestor.occupied);

16

Task 3 - Detect Ancestors
ExtFAA
Set the

occupied flag

Read

counterpart

Ancestors

Descendants

Desired node

• Another pair of counters
• d_head, d_rear

• Enter the “descendant queue” of each
ancestor
• ancestor.d_rear++;

17

ExtFAA
Increment d_rear

Task 4 - Notify Ancestors

Ancestors

Descendants

Desired node

Task 5 - Detect Descendants

Another client’s Task 4:

• Wait for my “descendant queue” to
get emptied
• while (d_head != d_rear);

18

ExtFAA
Increment d_rear

counterpart
Read

Poll d_head & d_rear

Ancestors

Descendants

Desired node

Data Structure Summary

19

Segment Tree

1 1 0 0 1 1 1 1 … 1 0 1

Leaf node: Bitmap

Internal node: Fields(bit-widths)

occupied(1)

rear(15)head(15)

d_rear(16)d_head(16)

Lock Protocol Summary

Task RDMA Verbs Verbs’ Targets

1. Lock the desired node ExtCAS /
ExtFAA + Read Desired node

2. Notify descendants ExtFAA Desired node

3. Detect conflicts at ancestors Read Ancestors

4. Notify ancestors ExtFAA Ancestors

5. Detect conflicts at descendants Read Desired node

20

co
un

te
rp

ar
ts

co
un

te
rp

ar
ts

Unlock

Revert modifications done in lock acquisition.

21

Ancestors

Descendants

Desired node
ExtCAS / ExtFAA
Clear the bitmap /

Increment head & clear occupied

ExtFAA
Increment d_head

Supportive Designs

Timing-based Sync (Task 4 & 5) to enforce protocol correctness

Strided Notification (Task 4) to reduce overheads

• Runtime scaling, parameter tuning, fast path, failure recovery, …
• See our paper for more details!

22

Experiment Setup

• 3 clients + 1 server
• Microbenchmark: lock acquire & release
• Application: Filebench & IO500 & NPB BT-IO

23

InfiniBand Network

Server

Client ClientClient

CPU Intel Xeon Gold 5220 @ 2.20 GHz

Memory 256 GB

NIC Mellanox ConnectX-6

Baselines

24

Type Description

Two-sided RDMA
with eRPC [2]

Maple tree from Oracle Linux UEK

Interval tree from Lustre

Linked list from [1]

One-sided RDMA
Linked list from [1] with pure RDMA

Trivially mutex * range size

[1] Alex Kogan, et al. Scalable Range Locks for Scalable Address Spaces and Beyond. In EuroSys’20.
[2] Anuj Kalia, et al. Datacenter RPCs can be General and Fast. In NSDI’19.

Citron vs. Two-sided

25

0

50

100

150

200

0

0.5

1

1.5

2

0 48 96 144 192

0

50

100

150

200

0

0.5

1

1.5

2

0 48 96 144 192

0

500

1000

0

0.5

1

0 48 96 144 192

P9
9

La
t(

us
)

Th
pt

(M
op

s/
s)

Number of Clients

Size = 1 Size = 16 Size = 256
3.9x 9.0x

1.4x

1.7x
2.4x

0.97x

Citron vs. Two-sided

25

0

50

100

150

200

0

0.5

1

1.5

2

0 48 96 144 192

0

50

100

150

200

0

0.5

1

1.5

2

0 48 96 144 192

0

500

1000

0

0.5

1

0 48 96 144 192

P9
9

La
t(

us
)

Th
pt

(M
op

s/
s)

Number of Clients

Size = 1 Size = 16 Size = 256
3.9x 9.0x

1.4x

1.7x
2.4x

0.97x

Citron has overall higher throughputs and
lower latencies than CPU-centric baselines.

Citron vs. Trivial One-sided

26

0

50

100

150

200

0

2

4

0 48 96 144 192

0

50

100

150

200

0

0.5

1

1.5

2

0 48 96 144 192

0

500

1000

0

0.5

1

0 48 96 144 192

P9
9

La
t(

us
)

Th
pt

(M
op

s/
s)

Number of Clients

Size = 1 Size = 16 Size = 256

1.9x

5.7x

1.5x

1.02x

1.3x

Citron vs. Trivial One-sided

26

0

50

100

150

200

0

2

4

0 48 96 144 192

0

50

100

150

200

0

0.5

1

1.5

2

0 48 96 144 192

0

500

1000

0

0.5

1

0 48 96 144 192

P9
9

La
t(

us
)

Th
pt

(M
op

s/
s)

Number of Clients

Size = 1 Size = 16 Size = 256

1.9x

5.7x

1.5x

1.02x

1.3x

Citron is
suboptimal

under
mutex-only
workloads.

With unaligned ranges
Citron performs better.

Note: aligned = mutex-only

Other Evaluation Results

• P50 latencies similar
• P99 latencies orders-of-magnitude lower

• Limited false conflict rates and abort rates (1e-5 ~ 1e-2)

• Quickly adapt to storage resource size growths (sub-millisecond level)

29

Conclusion

• We designed Citron, an efficient distributed range lock manager
using only one-sided RDMA to acquire and release locks.

• Citron translates ranges into RDMA-friendly mutexes with a segment
tree and use RDMA Extended Atomics to perform synchronization.

• Citron achieves overall higher performance than both two-sided and
trivial one-sided baselines.

27

Thanks & Q/A
Citron: Distributed Range Lock Management

with One-sided RDMA

28

Jian Gao, Youyou Lu, Minhui Xie, Qing Wang, Jiwu Shu

Contact: gaoj20@mails.tsinghua.edu.cn

	Citron: Distributed Range Lock�Management with One-sided RDMA
	Range Locks
	Managing Range Locks
	Managing Range Locks
	Managing Range Locks
	Our One-sided Solution: Citron
	The Big Picture
	The Segment Tree
	Map Ranges to Tree Nodes
	Selecting the Nodes Properly
	Lock Protocol - Theory
	Lock Protocol - Practice, i.e., Tasks
	Lock Protocol - Tools
	Task 1 - Lock the Desired Node
	Task 2 - Notify Descendants
	Task 3 - Detect Ancestors
	Task 4 - Notify Ancestors
	Task 5 - Detect Descendants
	Data Structure Summary
	Lock Protocol Summary
	Unlock
	Supportive Designs
	Experiment Setup
	Baselines
	Citron vs. Two-sided
	Citron vs. Two-sided
	Citron vs. Trivial One-sided
	Citron vs. Trivial One-sided
	Other Evaluation Results
	Conclusion
	Thanks & Q/A

