
Remap-SSD: Safely and Efficiently Exploiting SSD Address
Remapping to Eliminate Duplicate Writes

You Zhou1, Qiulin Wu1, Fei Wu1, Hong Jiang2,
Jian Zhou1, and Changsheng Xie1

1 Huazhong University of Science and Technology (HUST), China
2 University of Texas at Arlington (UTA), USA

Duplicate Writes are Everywhere

A C

BA

A

C

B

C

D

Data Duplication Double-write Journaling Data Relocations

Commit changes
to the journal

A’ B’

A’ B’

Checkpoint to database
or file system

A’ B’
A B

Segment cleaning
in log-structured systems

File defragmentation

6%～92% duplicate writes
[CAFTL & CASSD (FAST’11), SmartDedup (ATC’19)]

Writes Degrade SSD Performance and Lifetime

Flash SSDs are everywhere

Source: MAXIMIZE MARKET RESEARCH PVT. LTD. Lower cost & higher density

Write/Erase cycles: ~100,000 10,000 5,000 1,000

Eliminate
duplicate writes

on flash

Improve SSD
performance

& lifetime

Lower write speed & endurance

Eliminating Duplicate Writes on Flash

Host logical to flash physical
address mapping inside SSD

Overwrite L0 on flash page P0
Update logical page L1 out of place

LPN: host logical page number
PPN: flash physical page number
L2P: logical-to-physical

Copy data B
from L1 to L2

or
Write duplicate

data B to L2

Move data B
from L1 to L3

Replace duplicate writes with remappings

Prior Studies Exploiting SSD Address Remapping
l Various application scenarios of remapping can be classified in two dimensions

p M-to-1 L2P mappings: M is limited or unlimited
p Target addresses of remappings are predetermined or uncertain
Ø Write-ahead logging is C type: M = 2, remap data from log to predetermined home locations
Ø Data deduplication is A type: M and addresses of remappings depend on workloads

[1] JFTL (TOS 2009)
[2] ANViL (FAST’15)
[3] CAFTL (FAST’11)
[4] CA-SSD (FAST’11)
[5] Janusd (ATC’17)
[6] Copyless copy (HPCC’19)
[7] SHARE (SIGMOD’16)
[8] PebbleSSD (MEMSYS’17)
[9] WAL-SSD (TC 2020)

Outline

l Introduction

l Motivation

l Design of Remap-SSD

l Case Studies and Evaluation

l Conclusion

Mapping Inconsistency Problem with Remapping

L2P and P2L mappings in SSD

P2L mappings are necessary for
l data migrations between flash pages for

garbage collection (GC) and wear leveling
p locate and modify relevant L2P mappings

l power-off recovery (POR): restore L2P mappings

Remap L2 to P1 for copying data B from L1 to L2

{L1, L2} → P1
vs.

P1 → L1

Inconsistent L2P and P2L mappings

Corrupted L2P mappings after GC/POR

GC migrates data B to P1’ Recover L2P via P2L

OOB: out-of-band area

Prior Schemes for Mapping Consistency

{L1, L2} → P1
vs.

P1 → L1

Inconsistent mappings
after remapping L2 to L1 (P1)

High lookup overheads & poor scalability
l Log size grows: ~1GB for 300GB remap data

p Log scanning in every GC takes seconds
l Or limit the log size by disabling remapping

1. Persist a device-wide log [3,4,5,6,7]
P1 → L2, t4

Remapping metadata entries
2. NVRAM OOB [8]

Only fit in B & C-type
remapping scenarios

3. Prewrite L2 to P1 OOB [9]

Only fit in C-type scenarios
(remap L2 to P1: known in advance)

Motivation

Since the mapping inconsistency problem cannot be addressed properly,

existing schemes severely limit the usage of SSD address remapping.

Outline

l Introduction

l Motivation

l Design of Remap-SSD

l Case Studies and Evaluation

l Conclusion

Design Overview of Remap-SSD

Data move (MV)
Move data from L1 to L2

at time t1

Data copy or Dedup (CP)
Write L4 with the same

data as L3 at time t2

Remap(L2, L1, MV) Remap(L4, L3, CP)

P1, L2, L1, t1 P3, L4, null, t2

l Modify L2P mappings in DRAM
l Persist remapping metadata entries

Goal: full potentials of remapping

Design Overview of Remap-SSD

Data move (MV)
Move data from L1 to L2

at time t1

Data copy or Dedup (CP)
Write L4 with the same

data as L3 at time t2

Remap(L2, L1, MV) Remap(L4, L3, CP)

NVRAM
Segments

Seg. group Flash GC units

P1, L2, L1, t1 P3, L4, null, t2

l Modify L2P mappings
l Persist remapping metadata entries

*Superblock: a group of flash blocks with the
same offset across flash dies.

Lookup pattern of P2L mappings:
in a batch of flash pages in a GC unit

(e.g., flash block/superblock*)

Goal: full potentials of remapping

Design Overview of Remap-SSD

Data move (MV)
Move data from L1 to L2

at time t1

Data copy or Dedup (CP)
Write L4 with the same

data as L3 at time t2

Remap(L2, L1, MV) Remap(L4, L3, CP)

NVRAM
Segments

Seg. group Flash GC units

P1, L2, L1, t1 P3, L4, null, t2

l Modify L2P mappings
l Persist remapping metadata entries

*Superblock: a group of flash blocks with the
same offset across flash dies.

Lookup pattern of P2L mappings:
in a batch of flash pages in a GC unit

(e.g., flash block/superblock*)

Goal: full potentials of remapping

Flash
GC

NVRAM
GC

NVRAM segment
groups

Flash blocks/
superblocks

Free segments

GC and Power-off Recovery

l Flash GC for free blocks/superblocks
p Victim: block/superblock with the most

invalid pages and its NVRAM seg. group
p Fast lookups of P2L mappings in a small

segment group (not a large device-wide log)

l NVRAM GC for free segments
p Victim: NVRAM segment group with the

most invalid remapping metadata entries

l Power-off recovery
p Restore the latest L2P mappings from

persistent P2L mappings and timestamps
Ø in flash OOB (P2L from writes)
Ø in NVRAM segments (P2L from remappings)

l Retrieve P2L mappings
for data migrations

l NVRAM GC

Remapping Metadata Entry
l Remap operation: target LPN, source LPN(srcLPN), remap flag
l NVRAM supports 8-byte atomic writes Entry size: 2 x 8 bytes

p Cost benefit of NVRAM: 16B entry on PCM vs. 4KB duplicate data on flash ≈ 1x $ vs. 50x $*

Append-only writes
of entries on NVRAM

Remapping atomicity

Space efficiency
Discard srcLPN-PPN?
l Move: yes
l Copy: no

Mapping Consistency

Torn bit

Timestamp

PPN of srcLPN

Target LPN

Remap flag

srcLPN (mv) or null (cp)

Torn bit

8
bytes

8
bytes

P2L mapping
of remapping

Atomic writes of entries

l PPN offset in GC unit
l Compact the fields

*M. Oros, et al. Analysts weight in on persistent memory.
 Persistent Memory Summit 2018.

Outline

l Introduction

l Motivation

l Design of Remap-SSD

l Case Studies and Evaluation

l Conclusion

Experimental Setup

l Three case studies
p Data deduplication: remap for writes of duplicate data
p Write-ahead logging in SQLite: remap for checkpointing writes
p Cleaning/GC in log-structured F2FS: remap for data relocations

l Experimental platforms
p FEMU SSD emulator1: 32GB capacity

Ø filebench, fio, YCSB on RocksDB/MongoDB, db_bench
p SSDsim simulator2: 256GB capacity

Ø Real-world dedup traces from FIU3

l Four schemes for comparison
p NoRemap-SSD: baseline that does NOT exploit the address mapping utility
p Remap-SSD-FLog: existing scheme with a device-wide log on flash memory
p Remap-SSD-Nlog: an enhancement by storing the device-wide log on NVRAM
p Remap-SSD-Opt: optimal case with no limits on remapping and no P2L lookup overheads

Flash page read 50μs / 4KB

Flash page write 500μs / 4KB

Flash block erase 5ms / 1MB

NVRAM read 50ns / 64B

NVRAM write 500ns / 64B

Segment size 1KB by default

1. H. Li, et al. The CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator. FAST’18.
2. Y. Hu, et al. Performance impact and interplay of SSD parallelism through advanced commands, allocation strategy and data granularity. ICS’11.
3. A. Gupta, et al. Leveraging value locality in optimizing NAND flash-based SSDs. FAST’11.

Case Study: Data Deduplication

32GB SSD, 40MB-80MB-120MB log/NVRAM
 (simulated content locality, 30% duplicate data)

l Performance results with different log/NVRAM sizes
p Small log/NVRAM would limit the usage of remapping
p Large log/NVRAM would cause high P2L lookup overheads

l Remap-SSD: near-optimal performance & scalability
p Fast lookups of P2L mappings during GC even with large

NVRAM and large-scale remappings

256GB SSD, 160MB-320MB-640MB log/NVRAM
 (real-world dedup traces homes and mail)

40MB 80MB 120MB
FLog 20% 39% 44%
NLog 17% 24% 27%
Opt -46% -6% < -1%

Avg. performance: Remap-SSD vs. others

160MB 320MB 640MB
11% 32% 97%
7% 22% 63%

< -1% < -1% -4%

Small NVRAM limits the maximum number of remappings

Case Studies: SQLite WAL and F2FS Cleaning

SQLite write-ahead logging

Remapping enables
single-write WAL:

45% fewer flash writes

SSD bandwidth in fill-random (db_bench)

Benefit of remap SSD GC begins
Remap-SSD: 14% / 7%

over FLog / NLog*

Cleaning in log-structured F2FS

Speedups in fileserver (filebench), YCSB on MongoDB

1. First run of workload to age F2FS
l Similar perf.: few clean/remap operations

2. Cleaning F2FS until all invalid data are reclaimed
l Accumulate remapping metadata entries
l Remapping accelerates cleaning by 28%

3. Second run of workload to show performance
l Remap-SSD improves perf. by 19% over FLog and

12% over NLog*.* 32GB SSD, 80MB Log/NVRAM.

Outline

l Introduction

l Motivation

l Design of Remap-SSD

l Case Studies and Evaluation

l Conclusion

Conclusion
l Duplicate writes are common but harmful to SSD performance and lifetime.

l SSD address remapping can eliminate duplicate writes but its usage is severely limited
due to the L2P and P2L mapping inconsistency problem.
p A device-wide log for P2L mappings: high lookup overheads limit remappings
p Other solutions: only specific remapping scenarios

l We propose Remap-SSD to exploit full potentials of SSD address remapping.
p Expressive Remap primitive: logical writes of duplicate data
p Well-designed remapping metadata: mapping consistency, remapping atomicity
p Novel metadata management: fast lookups and persistence of P2L mappings

Ø Maintain small local logs in segmented NVRAM for flash GC units on demand

l Three case studies show Remap-SSD can achieve near-optimal performance and good
scalability in all types of remapping scenarios.
p Data deduplication, SQLite write-ahead logging, F2FS cleaning

Thank You!

Q&A

Email: zhouyou2@hust.edu.cn

