

LEARNING CACHE REPLACEMENT WITH CACHEUS

Farzana Beente Yusuf

<u>Liana Rodriguez</u>, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason Liu, Giri Narasimhan, Florida International University

Ming Zhao, Arizona State University

Introduction

Cache

Fast but relatively small in capacity

- Machine Learning
 - Improves decision processes

$\bullet \bullet \bullet \bullet$

Cache Replacement Algorithms

Non-adaptive

- Least Recently Used (LRU)
- Least Frequently Used (LFU)
- Low Inter-reference Recency Set (LIRS) [Jiang et al., '02]

Adaptive

- Adaptive Replacement Cache (ARC) [Modha, Megiddo, '02]
- Dynamic LIRS (DLIRS) [Li, '18]

ML-based Adaptive

- Adaptive Caching Using Multiple Experts (ACME) [Ari et al., '02]
- Reinforcement Learning On Cache Replacement (LeCaR) [Vietri et al., '18]
- Reinforcement Learning (Cacheus) [This Work]

WORKLOAD PRIMITIVES

LRU-Friendly LFU-Friendly Churn Scan

Prior Work: LeCaR

ML-Based: Reinforcement Learning On Cache Replacement

- Simple
 - LRU, LFU as experts
- Adaptive
 - Update weights
- Outperforms state-of-the-art
 - Small cache sizes

Vietri, et al., "Driving cache replacement with ML-based LeCaR." HotStorage '18.

Limitations of LeCaR

- Fixed Learning rate
 - 0.45 (empirically chosen)
- Can't handle Scan

Algorithm	LRU	LFU	Churn	Scan
ARC	\checkmark	X	X	\checkmark
LIRS	X	X	X	\checkmark
LeCaR	\checkmark	\checkmark	\sim	X
DLIRS	\checkmark	X	X	\checkmark

•••• CACHEUS: Improving LeCaR

- Adapt Learning Rate
- Improve experts
 - Introduce scan resistance
 - Replace LRU with
 - ARC (C1)
 - LIRS (C2)
 - DLIRS
 - Scan resistant LRU: SR-LRU (C3)
 - Improve churn resistance
 - Churn resistant LFU (CR-LFU)

•••• CACHEUS: Learning Rate Adaptation

Learning rate changed

- Performance change
 - Positive, reinforce latest direction
 - Negative, reverse the latest direction

Learning rate unchanged

- Performance change
 - Positive, no update
 - Negative, random jump

Performance zero for 10 intervals (Einziger et. Al, Middleware '18)

Restart Learning

•••• CACHEUS: Scan Resistance LRU (SR-LRU)

Figure: Understanding SR-LRU. Actions taken to handle request x for: cache miss, cache miss with x in history, cache hit with x in SR, and cache hit with x in R.

CACHEUS: Churn Resistance LFU (CR-LFU)

Figure: Understanding CR-LFU. Actions taken to handle request x for: cache miss, cache miss with x in history, cache hit with x in SR, and cache hit with x in R.

CACHEUS: Scan And Churn Resistance (Cont.)

Figure: SR-LRU with the scan workload primitive type. Two synthetic workloads: LFU-friendly pattern (left column) and LRU-Friendly pattern (right column). The working set is 175 items with a single inserted scan of size 60.

Figure: CR-LFU with the churn workload primitive type. Two synthetic workloads: a churn pattern (left column) and a combination of churn and LRU-friendly pattern (right column). The working set is 200 items.

Computing & Information Sciences

Experiments

- Datasets: 5 different sources
- Cache sizes: 0.05, 0.1, 0.5, 1, 5, 10%
- 6+1 Algorithms compared
 - LRU, LFU, ARC, LIRS, LeCaR, DLIRS, CACHEUS (3 variants)

Total experiments: 17,766

Dataset	# of Traces	
FIU	184	
MSR	22	
CloudPhysics	99	
CloudVPS	18	
CloudCache	6	
Total	329	

•••• Evaluation of CACHEUS

- Paired t-test used
- Significance: p-value
 - Green: Significantly better
 - Red: Significantly worse
 - Gray: Not significant

Magnitude: Effect size

(Cohen's d-measure)

- Dark: High effect
- Light: Low effect

Figure: CACHEUS vs. others

	Effect size	Better	Insignificant	Worse
CACHEUS	[-0.31 , 2.08]	47%	40%	13%

•••• Contributions

Workload Primitive Types

LRU-friendly, LFU-friendly, Churn, Scan

• CACHEUS: Improved Cache replacement algorithm

- Adaptive learning rate
- Improved experts: LRU and LFU algorithm
 - SR-LRU and
 - CR-LFU
- Comprehensive evaluations (17,766 simulations)
- Outstanding Performance

THANKS!!!

- SyLab Team, SCIS, FIU
- BioRG Team, SCIS, FIU
- Kenneth Salem
- FAST Organizing Committee

NetApp[®]

fyusu003@fiu.edu

https://sites.google.com/fiu.edu/farzana

