Computing &
Information Sciences

LEARNING CACHE REPLACEMENT
WITH CACHEUS

Farzana Beente Yusuf

Liana Rodriguez, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason Liu, Giri
Narasimhan, Florida International University

Ming Zhao, Arizona State University




e 00 roSompitna
Introduction
= Cache =" Machine Learning

= Fast but relatively small in capacity " [mproves decision processes

/]
$ CPU
&5 Regsters Cache management + ML
v(_)ooq,b Cache l
e, bb r———
— Improved performance

Re o

Disk Storage
(Local/Remote)




. . . Computing &
Information Sciences

Cache Replacement Algorithms

*Non-adaptive "Adaptive
= Least Recently Used (LRU) = Adaptive Replacement Cache (ARC)
= Least Frequently Used (LFU) [Modha, Megiddo, ‘02]
= Low Inter-reference Recency " Dynamic LIRS (DLIRS) [Li, “18]

Set (LIRS) [Jiang et al., ‘02]

=" ML-based Adaptive

= Adaptive Caching Using Multiple Experts (ACME) [Ari et al., ‘02]
= Reinforcement Learning On Cache Replacement (LeCaR) [Vietri et al., ‘18]
= Reinforcement Learning (Cacheus) [This Work]
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Prior Work: LeCaR

=" ML-Based: Reinforcement Learning On Cache Replacement

= Simple
= LRU, LFU as experts LeCaR
= Adaptive Cache /{
= Update weights
= Qutperforms state-of-the-art History \
] H H LFU WLFU
= Small cache sizes LRU LFU

Vietri, et al., “Driving cache replacement with ML-based LeCaR.” HotStorage ‘18.
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Limitations of LeCaR
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CACHEUS: ImprOVing LECaR nnnnnnnnnnnnnnnn

= Adapt Learning Rate {ﬂ

" [mprove experts

" Introduce scan resistance @
= Replace LRU with | SR-LRU
= ARC (C1)
= LIRS (C2) ﬁ Cacheus
= DLIRS B Update
= Scan resistant LRU: SR-LRU (C3) l'-'>-' weei)g(r:r::on
" Improve churn resistance [ Systems reedhat

* Churn resistant LFU (CR-LFU)



CACHEUS: Learning Rate Adaptation

" Learning rate changed
= Performance change
= Positive, reinforce latest direction
* Negative, reverse the latest direction

" Learning rate unchanged

= Performance change
= Positive, no update
= Negative, random jump

= Performance zero for 10 intervals (einziger et. Al, Middleware '18)

= Restart Learning

Wy = Wi16€

[ Learning rate




CACHEUS: Scan Resistance LRU (SR-LRU)
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Figure: Understanding SR-LRU. Actions taken to handle request x for: cache miss, cache miss with x in

history, cache hit with x in SR, and cache hit with x in R.



CACHEUS: Churn Resistance LFU (CR-LFU)
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Figure: Understanding CR-LFU. Actions taken to handle request x for: cache miss, cache miss with x in

history, cache hit with x in SR, and cache hit with x in R.
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CACHEUS: Scan And Churn Resistance (Cont.)
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Figure: SR-LRU with the scan workload primitive type. Two

synthetic workloads: LFU-friendly pattern (left column) and

LRU-Friendly pattern (right column). The working set is 175
items with a single inserted scan of size 60.

Figure: CR-LFU with the churn workload primitive type. Two
synthetic workloads: a churn pattern (left column) and a
combination of churn and LRU-friendly pattern (right

column). The working set is 200 items. 11
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Experiments

Dataset # of Traces

= Datasets: 5 different sources FIU 184
= Cache sizes: 0.05, 0.1, 0.5, 1, 5, MSR 22
10%

0 CloudPhysics 99

= 6+1 Algorithms compared CloudVPS 18
= L[RU, LFU, ARC, LIRS, LeCaR,

| CloudCache 6

DLIRS, CACHEUS (3 variants)

Total

"Total experiments: 17,766

12
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Evaluation Of CACHEUS nnnnnnnnnnnnnnnn

: A<B Insignificant A>B

" Paired t-test used AN T

= Significance: p-value CloudCache CloudPhysics CloudVPS FIU
" Green: Significantly better Dﬁ?f;\ \ ///y // f [;:
= Red: Significantly worse Leﬁ;g // /////// / /// 00
= Gray: Not significant §S£"“’°Z‘_m"m0252"“’0252"“’0252"“’9

" Magnitude: Effect size Figure: CACHEUS vs. others

= Dark: High effect

. CACHEUS [-0.31, 2.08] 47% 40% 13%
" Light: Low effect

13
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Contributions

= Workload Primitive Types
= LRU-friendly, LFU-friendly, Churn, Scan

= CACHEUS: Improved Cache replacement algorithm
= Adaptive learning rate
" Improved experts: LRU and LFU algorithm
= SR-LRU and
= CR-LFU
* Comprehensive evaluations (17,766 simulations)
" Qutstanding Performance

14
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