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  “Ideally one would desire an indefinitely large memory 
capacity ... It does not seem possible to achieve such a 
capacity. We are therefore forced to recognize the 
possibility of constructing a hierarchy of memories ...” 

--- “Preliminary Discussion of the Logical Design of 
an Electronic Computing Instrument” (1946), 
                         by Burks, Goldstine, and von Neumann. 

Storage Hierarchy

● Long been central to system designs



Storage Hierarchy

● Simplified two-layer hierarchy
○ Performance Device: fast, expensive, small
○ Capacity Device: slow, cheap, large 



Caching

● Replicating popular items in Performance 
Device 



Caching Wisdom: Maximizing Hit Rates

● Strives to direct most accesses to 
Performance Device



Caching Wisdom: Maximizing Hit Rates

● Strives to direct most accesses to 
Performance Device

● Caching delivers ~Performance Device 

speed along with Capacity Device capacity
● Traditionally, very good! 

○ Performance: Performance Device >> Capacity device
○ E.g. DRAM vs. HDD (100x differences )



● Insight: 
    the assumption (Performance device >> Capacity device) is broken

Problem: Caching is Insufficient 
in Modern Storage Hierarchies



● Non-Volatile Memory-based devices are 
filling the performance gap
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● Non-Volatile Memory-based devices are 
filling the performance gap

○ NVDIMM (300ns, ~7GB/s)
○ Low-latency SSD (10us, ~3GB/s)

● The differences between today’s neighboring layers 
are less clear and even overlapping (depending on 
workloads)

● E.g., serving reads with high parallelism, Optane 
SSD ~ Flash SSD, caching leaves huge 
performance available in Flash SSD unexploited

The Modern Storage Hierarchies

2.5x -> 4x 
(bandwidth)

0.4x -> 7x 
(write bandwidth)

1x -> 7x 
(bandwidth)



It’s imperative to rethink how modern 
hierarchies should be managed.
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Our Approach: 
Non-Hierarchical Caching (NHC)
● Insight: we should treat modern hierarchy in a less hierarchical manner

○ The available performance in capacity devices should be exploited

● Key idea: augmenting caching with dynamic load admission and request 
offloading



Augmenting Caching with Dynamic 
Load Admission and Request offloading
● Intuition: we should avoid excess load to cache device when it is saturated

Accesses getting 
queued
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Augmenting Caching with Dynamic 
Load Admission and Request offloading
● Intuition: we should avoid excess load to cache device when it is saturated
● Excess load examples:

○ Data admission to further improve hit rate
○ Too many cache hits
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Design: Non-Hierarchical Caching

● Enable offloading: tunable caching behaviors
○ Classic caching is  (data_admit = true, load_admit_ratio = 100%)

Decides read 
hits offloading



How much load to offload?

● Observation: different hierarchies, different workloads desire different split of 
load to devices (for best performance)

● Handle complexities: feedback-based cache scheduler



Design: Non-Hierarchical Caching

● feedback-based cache scheduler
○ Adjust tuning knobs (e.g., data_admit flag, load_admit ratio)



Design: Non-Hierarchical Caching

● feedback-based cache scheduler
○ Optimize a target performance metric
○ Target metric: user/device; throughput/ latency/ tail latency

■ f(X): a function to measure/compute the target metric



Example NHC Scheduling States



Example NHC Scheduling States

● State 1: begin with classic caching



Example NHC Scheduling States

● State 1: begin with classic caching
○ Ends when hit rate becomes “stable” 

Cache warmed up



Example NHC Scheduling States

● State 2: adjust load between devices
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Example NHC Scheduling States

● State 2: adjust load between devices
○ Turn off data admission for read misses
○ Start to tune load admit ratio (base point 100%)



Example NHC Scheduling States

● State 2: adjust load between devices

Adapt to workload 
change



Example NHC Scheduling States

● State 2: adjust load between devices
○ End state 2 when:  -> back to State 1 (classic caching)

■ Workload hit rate significantly changed
■ Find 100% load admit rate is always optimal



NHC - Key Properties

● Compatible with all classic caching implementations/ policies
● Require no prior knowledge of devices and workloads
● Robust to dynamic workloads



Implementation

● Implementation (Orthus):
○ Orthus-CAS: block-layer caching kernel module, based on Intel Open CAS framework
○ Orthus-KV: user-level caching layer for Wisckey [FAST’ 16] (a LSM-tree based K/V store)

● Supported target metrics:
○ Throught
○ Avg. latency
○ P99 latency

● Evaluated hierarchies: 
○ DRAM/Optane DC PM
○ Optane DC PM/Optane SSD
○ Optane SSD/Flash SSD



Ability to utilize capacity device 
performance

latency(us)

Various Hierarchies
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Ability to utilize capacity device 
performance

latency(us)

Minimum read load to 
saturate cache device

Normalized to cache 
device read bandwidth



Ability to utilize capacity device 
performance

Classic caching is 
bounded by cache 
device bandwidth 



Ability to utilize capacity device 
performance

Orthus utilizes 
capacity device 
performance 

54%



Ability to utilize capacity device 
performance

Can predict Orthus 
potential benefits in 
other hierarchies



Other Experiments in the Paper

● Orthus improves with various caching policies
● Orthus optimizes different target metrics (e.g., tail latency)
● Orthus improves YCSB workloads 
● Orthus improves dynamic workloads, such as Facebook ZippyDB workloads 

[FAST’ 20]
● ...
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Conclusion

● Evolving storage hierarchies have strong implications for caching
○ Quantitative comparisons across modern storage devices
○ Characterizing caching performance in both classic and modern hierarchies

● Orthus optimizes classic caching, by dynamic load admission and request 
offloading

○ Is compatible with all classic caching policies
○ Requires no prior knowledge of devices and workloads
○ Adapts to dynamic workloads

○ Can improve performance (throughput, tail latency) by up to 2X over classic caching in various 
storage hierarchies, under a range of realistic workloads
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Thank you
& 

Questions?

Contact: kanwu@cs.wisc.edu


