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Conventional /0 Scheduling
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Device-side 1 /0 Scheduling
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Saving host CPU cycles by offloading 1/0 scheduling function to device
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Device-side 1 /0 Scheduling
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Some storage protocols already have device-side scheduling features
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Device-side 1 /0 Scheduling
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Device-side 1 /0 Scheduling
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1. 1/0 handling frequency is only adjustable parameter
2. No consideration on I/O size
3. Supporting only three priority classes
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Our Approach
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D2FQ: Device-Direct Fair Queueing for NVMe SSDs
A low CPU overhead fair queueing I/O scheduler
built on top of NVMe WRR
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NVMe Weighted Round-Robin




Virtual Time-based Fair Queueing
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Virtual Time-based Fair Queueing

Satisfy fairness by equalizing
virtual time of flows
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Virtual Time-based Fair Queueing
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Virtual Time-based Fair Queueing - D2FQ
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Virtual Time-based Fair Queueing - D2FQ
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Virtual Time-based Fair Queueing - D2FQ
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Virtual Time-based Fair Queueing - D2FQ
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Virtual Time-based Fair Queueing - D2FQ
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D2FQ Challenges

{ How to obtain sufficient I/0 processing speed difference ]

Please see the paper

17



Dynamic HL Ratio Adjustment

= HL ratio
* |[deal ratio of I/0 processing speed between high and low queues
* Ability to regulate virtual time process

e.g.) g
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High weight : 4

Medium weight : 2
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Dynamic HL Ratio Adjustment

= HL ratio
* |[deal ratio of I/0 processing speed between high and low queues
* Ability to regulate virtual time process

e.g.)
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Most important factor to achieve |/O fairness
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Dynamic HL Ratio Adjustment

= HL ratio
* |[deal ratio of I/0 processing speed between high and low queues
* Ability to regulate virtual time process

Low HL ratio High HL ratio

Small ability to regulate Takes too long to process

Need to set a proper HL ratio value dynamically

May Violate Tairness may Incurs high tall latency



Dynamic HL Ratio Adjustment

= Increasing HL ratio
* Detect unfairness with 7, gt Tm & Tw
- Calculate the additional 1/0 e & N
throttling capability to provide Appl _rAvtmm S <
fairness App2 e m—r B <"

— Calculate the delta of virtual time (Avt) App3 Iﬁ
last time period App4 I — I Avtimax

— Current system requires at least Virtual time

Vimax yimec additional throttling
Avtmin

capability

AVt 0y

HL Ratio, gy = \ X HL Ratioprev‘ +1

Avtmin
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Dynamic HL Ratio Adjustment

= Decreasing HL ratio
* Occur when fairness is satisfied guvt Ty T; Ty
— Maximum virtual time gap is below 7, i, & Ll
« Calculate slowdown of each flow Appl _r i
— Required throttling capability of system  App2 —"— ! Fairness
to satisfy faimess between a flow and the e e— JERIEETEE
slowest flow :
- Set next HL ratio as the largest slowdown “PP* — e— N
Virtual time

among all active flows

Estimated bandwidth of flow f
when using high queues only

Actual bandwidth of flow f
H/Lratio,e,; = MAXIMUM( slowdown(f) )

slowdown(f) =



Evaluation

= Experimental configuration

CPU Intel Xeon Gold 5112 3.6 GHz
8 physical cores (Hyperthreading off)
OS Ubuntu 18.04.4
Base kernel Linux 5.3.10
Memory DDR4 192 GB
Storage device Samsung SZ985 800 GB Z-SSD
Target fair 1/0 schedulers None / D2FQ / MQFQ[ATC’19] / BFQ [Linux]
Workioads Realistic workoad: YCSB on Reckabs




Evaluation on Fairness
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* MQFQ and D2FQ achieve fairness while fully utilizing device bandwidth
= D2FQ reduced CPU utilization by up to 45% compared to MQFQ

System-jiffies/KB
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Dynamic HL Ratio Adjustment

= Compare I/0 performance with three HL ratio setups

e Static-3, Static-128, dynamic (D2FQ-default)

 # of flows increase with event1 and event2

* Flows have different weights (1 vs 3)

run time (sec) | 1/0 weight | # of flows
base H 0-end 1 1
eventl®| 10 - end 3 3
event2 20 - end 3 4

flowt

event?2

eventl

base

0

5

10 15 20 25 Time (sec)



Dynamic HL Ratio Adjustment

10 - 20 sec 20 - 30 sec
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= Static-128 and our scheme (dynamic) achieve fairness
= Static-3 fails to achieve fairness because HL ratio of 3 is too small
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Dynamic HL Ratio Adjustment

= Tail latency
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* Dynamic shows low tail latency as compared to static-128
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1/0 Performance
= Single thread high queue-depth I/0 performance
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= D2FQ shows low CPU usage & high |/0 performance (latency and bandwidth)
= D2FQ can be combined with AlIOS [ATC’19], low-latency block-layer bypassing scheme

e LL-D2FQ shows lowest CPU usage and highest 1/0 performance



D2FQ Conclusion

= A low CPU overhead fair queueing 1/0
scheduler built on top of NVMe WRR

= Fair queueing with high scheduling performance
* Reducing CPU utilization by up to 45%
* Fully utilizing bandwidth & showing low latency
* Enhanced scalability

= Vitalizing block-layer-bypass schemes (e.g., AlIOS
[ATC’19])

* Their low-latency |/0 performance is now
augmented with fair |/0 scheduling

TR

— direct request dispatch —
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Source Code:
https://github.com/skkucsl/d2fq
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