FAST 2021

D2FQ: Device-Direct
Fair Queueing for NVMe
SSDs

Jiwon Woo, Minwoo Ahn, Gyusun Lee and Jinkyu Jeong
Sungkyunkwan University (SKKU)
Computer Systems Laboratory

(7S SUNG KYUN KWAN UNIVERSITY

Conventional /0 Scheduling

[

[

_ Appl PP = . AppN |

- L 4

Block I/O scheduling layer

) 0OS

SSDs can deliver

Million IOPS ‘ a\

[Being able to handle requests from multi-tenants

A A

Conventional /0 Scheduling

[

[

{ Appl

Epz = \ AppN |

>~

k I/O scheduling layer

ﬂ Bloc
|

OS

SSDs can deliver
Million IOPS

CFQ [Linux]
BFQ [Linux]
FlashFQ [ATC ‘13]

MQFQ [ATC ‘19]

High CPU overhead

Device-side 1 /0 Scheduling

[[
. Appl PP pps] AppN |

- L 4

Block I/O scheduling layer

) 0OS

V., -

Saving host CPU cycles by offloading 1/0 scheduling function to device

v A

Device-side 1 /0 Scheduling

| Appi ﬁpLPpB] AppN |

[0S] HIOS [SIGARCH ‘14]

{ -4 4 -4 -4 1 FLIN [ISCA ‘18]

Some storage protocols already have device-side scheduling features

| |

Device-side 1 /0 Scheduling

High 0 RR

Medium {) RR

Low 0 RR

NVMe Weighted Round-Robin

Device-side 1 /0 Scheduling

High 0 RR

\ A

Vs

1. 1/0 handling frequency is only adjustable parameter
2. No consideration on I/O size
3. Supporting only three priority classes

) LOW""'URR

NVMe Weighted Round-Robin

Our Approach

[T T T 1A —

D2FQ: Device-Direct Fair Queueing for NVMe SSDs
A low CPU overhead fair queueing I/O scheduler
built on top of NVMe WRR

NVMe Weighted Round-Robin

Virtual Time-based Fair Queueing

Z I/O Sizecompleted

Virtual ti =
At tme 1/0 weight

Virtual Time-based Fair Queueing

Satisfy fairness by equalizing
virtual time of flows

Appl ;»

App2 I ——————
App3

App4 ~

Virtual time

2 I/O Sizecompleted

Virtual ti =
e 1/0 weight

Virtual Time-based Fair Queueing

[Cha

Appl ;»

App2
App3
App4

Virtual time =

>
e

~

Virtual time

2 1/0 Sizecompleted
1/0 weight

Virtual Time-based Fair Queueing - D2FQ

Appl

Dp2

App4

0s

Appl ;

App2 ———)
App3

App4 ﬁ

Virtual time

2 1/0 Sizecompleted
1/0 weight

Virtual time =

Virtual Time-based Fair Queueing - D2FQ

Appl

Dp2

App4

Submission = Dispatch

0s

Directly dis

Appl ;

App2 ———)
App3

App4 ﬁ

Virtual time

2 1/0 Sizecompleted
1/0 weight

Virtual time =

Virtual Time-based Fair Queueing - D2FQ

gvt
A
Appl Appl [Need to slowdown }
App2 App2
AP(Need to catch up
Apl othlers

Virtual time

Throttle flows whose virtual
time is far ahead of gvt

Virtual Time-based Fair Queueing - D2FQ

RR

RR

RR

Q
<
(o

Appl
App2
App3
App4

"

Virtual time

Virtual Time-based Fair Queueing - D2FQ

T T
App || App || App || App gvt Tm L

T 1 L A Y
—— direct request dispatch — Appl (=
/d) di\ o /d) App2 :-
2000 T A AP App3 ——
Appd ———— ‘

v VL VL v VL VL v ‘L v v ‘L v Virtualtirﬁe
EEREREEE | (o o
KR)R £ KR q & elseif,vtr,, —gvt < T

L “ Otherwise

D2FQ Challenges

{ How to obtain sufficient I/0 processing speed difference]

Please see the paper

17

Dynamic HL Ratio Adjustment

= HL ratio
* |[deal ratio of I/0 processing speed between high and low queues
* Ability to regulate virtual time process

e.g.) g
=

High weight : 4

Medium weight : 2

Low weight : 1

Dynamic HL Ratio Adjustment

= HL ratio
* |[deal ratio of I/0 processing speed between high and low queues
* Ability to regulate virtual time process

e.g.)

Hioch woicht - A4

Most important factor to achieve |/O fairness

LOW Welghnt © 1

Dynamic HL Ratio Adjustment

= HL ratio
* |[deal ratio of I/0 processing speed between high and low queues
* Ability to regulate virtual time process

Low HL ratio High HL ratio

Small ability to regulate Takes too long to process

Need to set a proper HL ratio value dynamically

May Violate Tairness may Incurs high tall latency

Dynamic HL Ratio Adjustment

= Increasing HL ratio
* Detect unfairness with 7, gt Tm & Tw
- Calculate the additional 1/0 e & N
throttling capability to provide Appl _rAvtmm S <
fairness App2 e m—r B <"

— Calculate the delta of virtual time (Avt) App3 Iﬁ
last time period App4 I — I Avtimax

— Current system requires at least Virtual time

Vimax yimec additional throttling
Avtmin

capability

AVt 0y

HL Ratio, gy = \ X HL Ratioprev‘ +1

Avtmin

21

Dynamic HL Ratio Adjustment

= Decreasing HL ratio
* Occur when fairness is satisfied guvt Ty T; Ty
— Maximum virtual time gap is below 7, i, & Ll
« Calculate slowdown of each flow Appl _r i
— Required throttling capability of system App2 —"— ! Fairness
to satisfy faimess between a flow and the e e— JERIEETEE
slowest flow :
- Set next HL ratio as the largest slowdown “PP* — e— N
Virtual time

among all active flows

Estimated bandwidth of flow f
when using high queues only

Actual bandwidth of flow f
H/Lratio,e,; = MAXIMUM(slowdown(f))

slowdown(f) =

Evaluation

= Experimental configuration

CPU Intel Xeon Gold 5112 3.6 GHz
8 physical cores (Hyperthreading off)
OS Ubuntu 18.04.4
Base kernel Linux 5.3.10
Memory DDR4 192 GB
Storage device Samsung SZ985 800 GB Z-SSD
Target fair 1/0 schedulers None / D2FQ / MQFQ[ATC’19] / BFQ [Linux]
Workioads Realistic workoad: YCSB on Reckabs

Evaluation on Fairness

15 EBw8 mw6 mwld mw2. o101
_ _ mm CPU utilization (%) 300
L ® 80 - -=System-jifies/KB
&5 S 60
= = 200
2 = 40
S 5 100
g ?5 20 - |

0 0
None D2FQ MQFQ BFQ None D2FQ MQFQ BFQ

* MQFQ and D2FQ achieve fairness while fully utilizing device bandwidth
= D2FQ reduced CPU utilization by up to 45% compared to MQFQ

System-jiffies/KB

24

Dynamic HL Ratio Adjustment

= Compare I/0 performance with three HL ratio setups

e Static-3, Static-128, dynamic (D2FQ-default)

 # of flows increase with event1 and event2

* Flows have different weights (1 vs 3)

run time (sec) | 1/0 weight | # of flows
base H 0-end 1 1
eventl®| 10 - end 3 3
event2 20 - end 3 4

flowt

event?2

eventl

base

0

5

10 15 20 25 Time (sec)

Dynamic HL Ratio Adjustment

10 - 20 sec 20 - 30 sec
— 10 M base m eventl M base m eventl event2
w n
a 5 05
S =
= 05 = UNFAIR
= c S
E o
< 0.0 0.0 ==
@ static-3 dynamic, static-3 dynamic,
static-128 static-128

= Static-128 and our scheme (dynamic) achieve fairness
= Static-3 fails to achieve fairness because HL ratio of 3 is too small

] 20 ' :
* Runtime changeof 2 eventl begins f .
HL ratio in our s 10
. — : *
scheme (dynamic) T 0 event2 begins
0 5 10 15 20 25 30

Times (sec) e

Dynamic HL Ratio Adjustment

= Tail latency

10 - 20 sec

100

Percentile
(do)
o1

o)
o

-O~-dynamic

eventl
-a-static-128

=

N\

o

50 100

Latency (msec)
* Dynamic shows low tail latency as compared to static-128

20 - 30 sec eventl/2

100

95

Percentile

90

-O-dynamic —A&-static-128

0 50 100
Latency (msec)

1/0 Performance
= Single thread high queue-depth I/0 performance

Il

|

®MQFQ. CID2FQ [None mLL-D2FQ

|

80 oot L 100
® | -A-D2rFQ s8 Ll
‘;’, a0 | ~TNone E 60 I
S -e-LL-D2FQ S 40 4. 1HHL
g & 20 '"" 1HHL |
0 1 5 3 12345678 9101112131415 16

Bandwidth (GB/s)

I/0 depth

= D2FQ shows low CPU usage & high |/0 performance (latency and bandwidth)
= D2FQ can be combined with AlIOS [ATC’19], low-latency block-layer bypassing scheme

e LL-D2FQ shows lowest CPU usage and highest 1/0 performance

D2FQ Conclusion

= A low CPU overhead fair queueing 1/0
scheduler built on top of NVMe WRR

= Fair queueing with high scheduling performance
* Reducing CPU utilization by up to 45%
* Fully utilizing bandwidth & showing low latency
* Enhanced scalability

= Vitalizing block-layer-bypass schemes (e.g., AlIOS
[ATC’19])

* Their low-latency |/0 performance is now
augmented with fair |/0 scheduling

TR

— direct request dispatch —

O O O O

Source Code:
https://github.com/skkucsl/d2fq

29

Thank you
¢S

SUNG KYUN KWAN
UNIVERSITY

Contact:

Jiwon Woo - jiwon.woo@csi.skku.edu
Minwoo Ahn - minwoo.ahn@csi.skku.edu

Gyusun Lee - gyusun.lee@csi.skku.edu
Jinkyu Jeong - jinkyu@skku.edu

Source Code:
https://github.com/skkucsl/d2fq

30

mailto:jiwon.woo@csi.skku.edu
mailto:minwoo.ahn@csi.skku.edu
mailto:gyusun.lee@csi.skku.edu
mailto:jinkyu@skku.edu
https://github.com/skkucsl/d2fq

