
D2FQ: Device-Direct
Fair Queueing for NVMe
SSDs
Jiwon Woo, Minwoo Ahn, Gyusun Lee and Jinkyu Jeong

Sungkyunkwan University (SKKU)

Computer Systems Laboratory

FAST 2021

App3App2

Conventional I/O Scheduling

App1 AppN

os

SSDs can deliver
Million IOPS

Being able to handle requests from multi-tenants

...Block I/O scheduling layer

2

App3App2

Conventional I/O Scheduling

App1 AppN

os

CFQ [Linux]

BFQ [Linux]

FlashFQ [ATC ‘13]

…

MQFQ [ATC ‘19]

High CPU overhead

CPU

SSDs can deliver
Million IOPS

...Block I/O scheduling layer

3

App3App2

Device-side I/O Scheduling

App1 AppN

os
I/O scheduling layer

Saving host CPU cycles by offloading I/O scheduling function to device

CPU Block I/O scheduling layer

4

.

App3App2

Device-side I/O Scheduling

App1 AppN

os HIOS [SIGARCH ‘14]

FLIN [ISCA ‘18]

.

.
Some storage protocols already have device-side scheduling features

5

App3App2

Device-side I/O Scheduling

App1 AppN

os
RR

RR

RR

WRR

NVMe Weighted Round-Robin

High

Medium

Low

6

App3App2

Device-side I/O Scheduling

App1 AppN

os
RR

RR

RR

WRR

NVMe Weighted Round-Robin

High

Medium

Low

1. I/O handling frequency is only adjustable parameter
2. No consideration on I/O size
3. Supporting only three priority classes

7

App3App2

Our Approach

App1 AppN

os
RR

RR

RR

WRR

NVMe Weighted Round-Robin

High

Medium

Low

D2FQ: Device-Direct Fair Queueing for NVMe SSDs
A low CPU overhead fair queueing I/O scheduler

built on top of NVMe WRR

8

Virtual Time-based Fair Queueing

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 =
σ 𝐼/𝑂 𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝐼/𝑂 𝑤𝑒𝑖𝑔ℎ𝑡
os

App3App2App1 App4

9

Virtual Time-based Fair Queueing

os

App3App2App1 App4

App3

App2

App1

App4

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 =
σ 𝐼/𝑂 𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝐼/𝑂 𝑤𝑒𝑖𝑔ℎ𝑡

Satisfy fairness by equalizing
virtual time of flows

Virtual time

10

Virtual Time-based Fair Queueing

os

App3App2App1 App4

App3

App2

App1

App4

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 =
σ 𝐼/𝑂 𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝐼/𝑂 𝑤𝑒𝑖𝑔ℎ𝑡

Virtual time

Submission

Dispatch

StagingCPU

11

Virtual Time-based Fair Queueing – D2FQ

os

App3App2App1 App4

App3

App2

App1

App4

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 =
σ 𝐼/𝑂 𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝐼/𝑂 𝑤𝑒𝑖𝑔ℎ𝑡

Virtual time

12

Virtual Time-based Fair Queueing – D2FQ

os App3

App2

App1

App4

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 =
σ 𝐼/𝑂 𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝐼/𝑂 𝑤𝑒𝑖𝑔ℎ𝑡

Virtual time

Directly dispatch to device

Submission = Dispatch

App3
App4App2App1

13

Virtual Time-based Fair Queueing – D2FQ

os App3

App2

App1

App4

App3App2App1 App4
𝑔𝑣𝑡

App3

App2

App1

App4

Need to slowdown

Global virtual time (𝑔𝑣𝑡) :
Minimum virtual time value

among active flows

Throttle flows whose virtual
time is far ahead of gvt

Virtual time

Need to catch up
others

14

Virtual Time-based Fair Queueing – D2FQ

os

App3App2App1 App4
𝑔𝑣𝑡

App3

App2

App1

App4

NVMe WRR

RR

RR

RR

WRR
Virtual time

High

Medium

Low

15

Virtual Time-based Fair Queueing – D2FQ

𝑔𝑣𝑡

App3

App2

App1

App4

𝜏𝑚 𝜏𝑙

൞

𝑄ℎ𝑖𝑔ℎ
𝑄𝑚𝑖𝑑

𝑄𝑙𝑜𝑤

𝑖𝑓, 𝑣𝑡𝑓𝑙𝑜𝑤 − 𝑔𝑣𝑡 < 𝜏𝑚
𝑒𝑙𝑠𝑒 𝑖𝑓, 𝑣𝑡𝑓𝑙𝑜𝑤 − 𝑔𝑣𝑡 < 𝜏𝑙

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Virtual time

os

AppAppApp App

direct request dispatch

16

D2FQ Challenges

How to obtain sufficient I/O processing speed difference

How to manage gvt scalably?

Which flow should be selected for I/O throttling?

Dynamic HL ratio adjustment

Sloppy minimum tracking

Setting the queue class thresholds (𝜏𝑚, 𝜏𝑙)

Please see the paper

17

Dynamic HL Ratio Adjustment

▪HL ratio

• Ideal ratio of I/O processing speed between high and low queues

• Ability to regulate virtual time process

RR

RR

RR

WRR

High weight : 4

Low weight : 1

Medium weight : 2

e.g.)

18

Dynamic HL Ratio Adjustment

▪HL ratio

• Ideal ratio of I/O processing speed between high and low queues

• Ability to regulate virtual time process

HL ratio 4

High weight : 4

Low weight : 1

Medium weight : 2Most important factor to achieve I/O fairness

e.g.)

19

Dynamic HL Ratio Adjustment

▪HL ratio

• Ideal ratio of I/O processing speed between high and low queues

• Ability to regulate virtual time process

Low HL ratio High HL ratio

Small ability to regulate
virtual time progression

Takes too long to process
requests in low priority queues

may violate fairness may incurs high tail latency
Need to set a proper HL ratio value dynamically

20

Dynamic HL Ratio Adjustment

▪ Increasing HL ratio

• Detect unfairness with 𝝉𝒘
• Calculate the additional I/O

throttling capability to provide
fairness

‒ Calculate the delta of virtual time (∆𝑣𝑡)
last time period

‒ Current system requires at least
∆𝑣𝑡𝑚𝑎𝑥

∆𝑣𝑡𝑚𝑖𝑛
times additional throttling

capability
𝐻𝐿 𝑅𝑎𝑡𝑖𝑜𝑛𝑒𝑥𝑡 =

∆𝑣𝑡𝑚𝑎𝑥

∆𝑣𝑡𝑚𝑖𝑛
× 𝐻𝐿 𝑅𝑎𝑡𝑖𝑜𝑝𝑟𝑒𝑣 + 1

𝑔𝑣𝑡

App3

App2

App1

App4

𝜏𝑚 𝜏𝑙 𝜏𝑤

Fairness
Broken

∆𝑣𝑡𝑚𝑎𝑥

∆𝑣𝑡𝑚𝑖𝑛

Virtual time

21

Dynamic HL Ratio Adjustment

slowdown 𝑓 =
σ 𝑙𝑓,ℎ ∗

𝑃ℎ
𝑃ℎ

+ σ 𝑙𝑓,𝑚 ∗
𝑃ℎ
𝑃𝑚

+ σ 𝑙𝑓,𝑙 ∗
𝑃ℎ
𝑃𝑙

σ 𝑙𝑓,ℎ + σ 𝑙𝑓,𝑚 + σ 𝑙𝑓,𝑙

𝐻/𝐿𝑟𝑎𝑡𝑖𝑜𝑛𝑒𝑥𝑡 = 𝑴𝑨𝑿𝑰𝑴𝑼𝑴(slowdown 𝑓)

▪Decreasing HL ratio
• Occur when fairness is satisfied

‒ Maximum virtual time gap is below 𝜏𝑤
• Calculate slowdown of each flow

‒ Required throttling capability of system
to satisfy fairness between a flow and the
slowest flow

• Set next HL ratio as the largest slowdown
among all active flows

Estimated bandwidth of flow f
when using high queues only

Actual bandwidth of flow f

𝑔𝑣𝑡

App3

App2

App1

App4

𝜏𝑚 𝜏𝑙 𝜏𝑤

Fairness
Satisfied

Virtual time

22

Evaluation

CPU
Intel Xeon Gold 5112 3.6 GHz

8 physical cores (Hyperthreading off)

OS Ubuntu 18.04.4

Base kernel Linux 5.3.10

Memory DDR4 192 GB

Storage device Samsung SZ985 800 GB Z-SSD

Target fair I/O schedulers None / D2FQ / MQFQ[ATC’19] / BFQ [Linux]

Workloads
Microbenchmark: FIO (libaio engine)
Realistic workload: YCSB on RocksDB

▪ Experimental configuration

23

Evaluation on Fairness

▪ MQFQ and D2FQ achieve fairness while fully utilizing device bandwidth

▪ D2FQ reduced CPU utilization by up to 45% compared to MQFQ

0.0

0.5

1.0

1.5

None D2FQ MQFQ BFQ

B
a

n
d

w
id

th
 (G

B
/

s)

w8 w6 w4 w2

0

100

200

300

0

20

40

60

80

100

None D2FQ MQFQ BFQ

S
ys

te
m

-j
if

fi
es

/
K

B

C
P

U
 u

ti
liz

a
ti

o
n

 (%
) CPU utilization (%)

System-jiffies/KB

24

Dynamic HL Ratio Adjustment

▪Compare I/O performance with three HL ratio setups

• Static-3, Static-128, dynamic (D2FQ-default)

• # of flows increase with event1 and event2

• Flows have different weights (1 vs 3)

run time (sec) I/O weight # of flows

base 0 – end 1 1

event1 10 – end 3 3

event2 20 - end 3 4
Time (sec)5 10 15 20 250

base

event1

event2

flow

25

Dynamic HL Ratio Adjustment

▪ Static-128 and our scheme (dynamic) achieve fairness

▪ Static-3 fails to achieve fairness because HL ratio of 3 is too small

0.0

0.5

1.0

static-3 dynamic,

static-128

B
a

n
d

w
id

th
 (G

B
/

s)

base event1

0.0

0.5

static-3 dynamic,

static-128

B
a

n
d

w
id

th

(G
B

/
s)

base event1 event2

H
L

ra
ti

o

Times (sec)

0

10

20

0 5 10 15 20 25 30

event2 begins

event1 begins• Runtime change of
HL ratio in our
scheme (dynamic)

UNFAIR UNFAIRFAIR FAIR

10 - 20 sec 20 - 30 sec

26

Dynamic HL Ratio Adjustment

▪Tail latency

• Dynamic shows low tail latency as compared to static-128

90

95

100

0 50 100

P
er

ce
n

ti
le

Latency (msec)

dynamic static-128

90

95

100

0 50 100

P
er

ce
n

ti
le

Latency (msec)

dynamic static-128

10 - 20 sec 20 - 30 secevent1 event1/2

27

20

40

80

0 1 2 3

La
te

n
cy

 (u
se

c)

Bandwidth (GB/s)

MQFQ

D2FQ

None

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
P

U
 u

ti
liz

a
ti

o
n

 (%
)

I/O depth

MQFQ D2FQ None

I/O Performance

▪ Single thread high queue-depth I/O performance

▪ D2FQ shows low CPU usage & high I/O performance (latency and bandwidth)

▪ D2FQ can be combined with AIOS [ATC’19], low-latency block-layer bypassing scheme

• LL-D2FQ shows lowest CPU usage and highest I/O performance

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
P

U
 u

ti
liz

a
ti

o
n

 (%
)

I/O depth

MQFQ D2FQ None

20

40

80

0 1 2 3

La
te

n
cy

 (u
se

c)

Bandwidth (GB/s)

MQFQ

D2FQ

None

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
P

U
 u

ti
liz

a
ti

o
n

 (%
)

I/O depth

MQFQ D2FQ None

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
P

U
 u

ti
liz

a
ti

o
n

 (%
)

I/O depth

MQFQ D2FQ None LL-D2FQ

20

40

80

0 1 2 3

La
te

n
cy

 (u
se

c)

Bandwidth (GB/s)

MQFQ

D2FQ

None

20

40

80

0 1 2 3

La
te

n
cy

 (u
se

c)

Bandwidth (GB/s)

MQFQ

D2FQ

None

LL-D2FQ

28

D2FQ Conclusion

▪ Fair queueing with high scheduling performance

• Reducing CPU utilization by up to 45%

• Fully utilizing bandwidth & showing low latency

• Enhanced scalability

▪ Vitalizing block-layer-bypass schemes (e.g., AIOS
[ATC’19])

• Their low-latency I/O performance is now
augmented with fair I/O scheduling Source Code:

https://github.com/skkucsl/d2fq

▪A low CPU overhead fair queueing I/O

scheduler built on top of NVMe WRR

29

Contact:
Jiwon Woo - jiwon.woo@csi.skku.edu

Minwoo Ahn - minwoo.ahn@csi.skku.edu
Gyusun Lee - gyusun.lee@csi.skku.edu
Jinkyu Jeong - jinkyu@skku.edu

Source Code:
https://github.com/skkucsl/d2fq

Thank you

30

mailto:jiwon.woo@csi.skku.edu
mailto:minwoo.ahn@csi.skku.edu
mailto:gyusun.lee@csi.skku.edu
mailto:jinkyu@skku.edu
https://github.com/skkucsl/d2fq

