
Rethinking File Mapping 
in Persistent Memory

Ian Neal1, Gefei Zuo1, Eric Shiple1, Tanvir Ahmed Khan1, 
Youngjin Kwon3, Simon Peter2, Baris Kasikci1

1

2 3



Good News! PM has arrived!

2Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)
• 30−40x faster than SSDs

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)
• 30−40x faster than SSDs
• File system IO performance has not been 

able to keep up with PM performance. 
Why?

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)
• 30−40x faster than SSDs
• File system IO performance has not been 

able to keep up with PM performance. 
Why?

• No rigorous analysis of IO path 
performance!

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



File IO Before PM

3



File IO Before PM

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

3



File IO Before PM

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

3



File IO Before PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

3

Block 
allocator



File IO Before PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

3

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
DMA

• File mapping cache 
• File data cache 

Block 
allocator



File IO Before PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

3

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
DMA

• File mapping cache 
• File data cache 

Block 
allocator



File IO Before PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

3

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
DMA

• File mapping cache 
• File data cache 

Block 
allocator



File IO Before PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

3

• When devices were slow, FS software overheads 
were negligible

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
DMA

• File mapping cache 
• File data cache 

Block 
allocator



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
DMA

• File mapping cache 
• File data cache 

Block 
allocator



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• File data cache 

Block 
allocator



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• File data cache 

Block 
allocator



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• File data cache 

Block 
allocator



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• File data cache 

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …



`

File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …



File IO After PM

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

4

• FS components must be optimized for PM
• Many have in prior work

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)

Block 
allocator

Strata (SOSP‘17)

NOVA (FAST‘16)

ZoFS (SOSP‘19)

SplitFS (SOSP‘19)

PMFS (EuroSys‘14) …

Can comprise up to 70% of the IO path overhead!



Our Contributions

5



Our Contributions

• Rigorously analyze file mapping in PM

5



Our Contributions

• Rigorously analyze file mapping in PM

• Optimize legacy PM file mapping structures

5



Our Contributions

• Rigorously analyze file mapping in PM

• Optimize legacy PM file mapping structures

• Design new PM-optimized file mapping approaches

5



Our Contributions

• Rigorously analyze file mapping in PM

• Optimize legacy PM file mapping structures

• Design new PM-optimized file mapping approaches

• Evaluate end-to-end performance on real workloads

5



Our Contributions

• Rigorously analyze file mapping in PM

• Optimize legacy PM file mapping structures

• Design new PM-optimized file mapping approaches

• Evaluate end-to-end performance on real workloads

5



Analysis Overview

6



Analysis Overview

How is file mapping 
affected by… Design Question
Page caching? Is page caching necessary?
File size? Specialize for different file sizes?
IO size? Optimize for sequential access?
Space utilization? Make file mapping structure elastic?
Concurrency? Is ensuring isolation important?
Locality? Optimize for specific workloads?
Fragmentation? Make robust against file system aging?
Storage structures? Can we reuse PM storage structures?
Real workloads? Are mapping optimizations impactful?

6



Analysis Overview

How is file mapping 
affected by… Design Question
Page caching? Is page caching necessary?
File size? Specialize for different file sizes?
IO size? Optimize for sequential access?
Space utilization? Make file mapping structure elastic?
Concurrency? Is ensuring isolation important?
Locality? Optimize for specific workloads?
Fragmentation? Make robust against file system aging?
Storage structures? Can we reuse PM storage structures?
Real workloads? Are mapping optimizations impactful?

6

How is file mapping 
affected by… Design Question
Page caching? Is page caching necessary?
File size? Specialize for different file sizes?
IO size? Optimize for sequential access?
Space utilization? Make file mapping structure elastic?
Concurrency? Is ensuring isolation important?
Locality? Optimize for specific workloads?
Fragmentation? Make robust against file system aging?
Storage structures? Can we reuse PM storage structures?
Real workloads? Are mapping optimizations impactful?



Analysis Setup

7



Analysis Setup

7

• Evaluation setup: 
• Implemented in Strata (SOSP’17) 
• Baseline mapping structure: Extent trees in the page cache (Strata default) 
• Evaluated on 256 GB Intel Optane DC NVDIMMs  



Analysis Setup

7

• Evaluation setup: 
• Implemented in Strata (SOSP’17) 
• Baseline mapping structure: Extent trees in the page cache (Strata default) 
• Evaluated on 256 GB Intel Optane DC NVDIMMs  

• Analysis performed using YCSB on LevelDB 
• YCSB: Popular key-value store workload 
• LevelDB: Popular key-value store (used in original Strata evaluation)



Analysis Setup

7

• Evaluation setup: 
• Implemented in Strata (SOSP’17) 
• Baseline mapping structure: Extent trees in the page cache (Strata default) 
• Evaluated on 256 GB Intel Optane DC NVDIMMs  

• Analysis performed using YCSB on LevelDB 
• YCSB: Popular key-value store workload 
• LevelDB: Popular key-value store (used in original Strata evaluation)



Analysis Setup

7

• Evaluation setup: 
• Implemented in Strata (SOSP’17) 
• Baseline mapping structure: Extent trees in the page cache (Strata default) 
• Evaluated on 256 GB Intel Optane DC NVDIMMs  

• Analysis performed using YCSB on LevelDB 
• YCSB: Popular key-value store workload 
• LevelDB: Popular key-value store (used in original Strata evaluation)

• Evaluate on Filebench 
• fileserver (1:2 read/write ratio) 
• webproxy (5:1 read/write ratio)



Is Page Caching Necessary?

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

8

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• …

Block 
allocator



Is Page Caching Necessary?

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

8

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• …

Block 
allocator



Is Page Caching Necessary?

File Mapping

Application

write()

file: /home/ian/notes.txt

offset: 0x40000000
data: “Neque porro quisquam 
est qui dolorem ...”

File System

inode num: 0x101

logical block: 0x40000

device offset: ...

8

Page 
cache
Page 
cache
Page 
Cache 

(DRAM)
• File mapping cache 
• …

Block 
allocator

Using the page cache impacts file mapping structure design!



Is Page Caching Necessary?

9
(Higher is better!)



Is Page Caching Necessary?

9
(Higher is better!)



Is Page Caching Necessary?

9
(Higher is better!)

No! Copying mappings to DRAM is costly



Contributions

• Rigorously analyze file mapping in PM 

• Optimize legacy PM file mapping structures 

• Design new PM-optimized file mapping approaches 

• Evaluate end-to-end performance on real workloads

10



Analysis Overview

How is file mapping 
affected by… Design Question
Page caching? Is page caching necessary?
File size? Specialize for different file sizes?
IO size? Optimize for sequential access?
Space utilization? Make file mapping structure elastic?
Concurrency? Is ensuring isolation important?
Locality? Optimize for specific workloads?
Fragmentation? Make robust against file system aging?
Storage structures? Can we reuse PM storage structures?
Real workloads? Are mapping optimizations impactful?

11



Analysis Highlights

12



Analysis Highlights
• Analyze 4 different file mapping approaches optimized for PM  

• Optimize legacy PM file mapping structures 
• Extent trees (Strata, ext4-DAX) 
• Radix trees (page cache mapping, NOVA) 

12



Analysis Highlights
• Analyze 4 different file mapping approaches optimized for PM  

• Optimize legacy PM file mapping structures 
• Extent trees (Strata, ext4-DAX) 
• Radix trees (page cache mapping, NOVA) 

• Legacy structures suffered performance degradation on large files, 
update operations expensive

12



Analysis Highlights
• Analyze 4 different file mapping approaches optimized for PM  

• Optimize legacy PM file mapping structures 
• Extent trees (Strata, ext4-DAX) 
• Radix trees (page cache mapping, NOVA) 

• Legacy structures suffered performance degradation on large files, 
update operations expensive

12



Analysis Highlights
• Analyze 4 different file mapping approaches optimized for PM  

• Optimize legacy PM file mapping structures 
• Extent trees (Strata, ext4-DAX) 
• Radix trees (page cache mapping, NOVA) 

• Legacy structures suffered performance degradation on large files, 
update operations expensive

• Design new PM-optimized file mapping approaches 
• Cuckoo hashing  
• HashFS 

12



HashFS

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

13



HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

• Combined block-allocation and file-mapping scheme 
• Insert into hash table implicitly allocates block at corresponding offset 
• Bypasses expensive block allocator management (cf. our paper)

13



HashFS (cont.)

14



HashFS (cont.)
• Need to avoid all resizing (incurs high update latency) 

• Must also be a global structure (one structure for all files) 
• Statically allocate max size at creation

14



HashFS (cont.)
• Need to avoid all resizing (incurs high update latency) 

• Must also be a global structure (one structure for all files) 
• Statically allocate max size at creation

• FS optimization: use SIMD for large IO operations 
• Many file system workloads perform large IO operations 
• For efficiency, mapping structures must return ranges of mappings 
• Perform hash table operations in parallel

14



Contributions

• Rigorously analyze file mapping in PM 

• Optimize legacy PM file mapping structures 

• Design new PM-optimized file mapping approaches 

• Evaluate end-to-end performance on real workloads

15



Are File Mapping Optimizations Impactful?

16
(Higher is better!)



Are File Mapping Optimizations Impactful?

16
(Higher is better!)



Are File Mapping Optimizations Impactful?

16
(Higher is better!)

HashFS provides +10–45% throughput!



Are File Mapping Optimizations Impactful?

16
(Higher is better!)



Are File Mapping Optimizations Impactful?

16
(Higher is better!)



Are File Mapping Optimizations Impactful?

16
(Higher is better!)

PM-optimized extent trees have 13% lower throughput!



Are File Mapping Optimizations Impactful?

17

(Higher is better!)



Are File Mapping Optimizations Impactful?

17

(Higher is better!)

HashFS provides +26% throughput!



Conclusions

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

• A rigorous analysis yields insights into performance-shortfalls of 
existing mapping approaches

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

• A rigorous analysis yields insights into performance-shortfalls of 
existing mapping approaches

• We design two new, global file mapping approaches (cuckoo 
hashing, HashFS)

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

• A rigorous analysis yields insights into performance-shortfalls of 
existing mapping approaches

• We design two new, global file mapping approaches (cuckoo 
hashing, HashFS)

• HashFS (our new PM-optimized file mapping approach) 
outperforms the state-of-the-art by up to 45% in real workloads

18



Thank you!

Corresponding Author: Ian Neal 
iangneal@umich.edu 

https://about.iangneal.io


