
Rethinking File Mapping 
in Persistent Memory

Ian Neal1, Gefei Zuo1, Eric Shiple1, Tanvir Ahmed Khan1, 
Youngjin Kwon3, Simon Peter2, Baris Kasikci1

1

2 3



Good News! PM has arrived!

2Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)
• 30−40x faster than SSDs

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)
• 30−40x faster than SSDs
• File system IO performance has not been 

able to keep up with PM performance. 
Why?

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



Good News! PM has arrived!

2

• Great, fast new storage technology 
called persistent main memory (PM) 

• AKA non-volatile memory (NVM)
• 30−40x faster than SSDs
• File system IO performance has not been 

able to keep up with PM performance. 
Why?

• No rigorous analysis of IO path 
performance!

Image Source: https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 
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Can comprise up to 70% of the IO path overhead!
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• Evaluation setup: 
• Implemented in Strata (SOSP’17) 
• Baseline mapping structure: Extent trees in the page cache (Strata default) 
• Evaluated on 256 GB Intel Optane DC NVDIMMs  

• Analysis performed using YCSB on LevelDB 
• YCSB: Popular key-value store workload 
• LevelDB: Popular key-value store (used in original Strata evaluation)

• Evaluate on Filebench 
• fileserver (1:2 read/write ratio) 
• webproxy (5:1 read/write ratio)
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Using the page cache impacts file mapping structure design!
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No! Copying mappings to DRAM is costly
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Analysis Highlights
• Analyze 4 different file mapping approaches optimized for PM  

• Optimize legacy PM file mapping structures 
• Extent trees (Strata, ext4-DAX) 
• Radix trees (page cache mapping, NOVA) 

• Legacy structures suffered performance degradation on large files, 
update operations expensive

• Design new PM-optimized file mapping approaches 
• Cuckoo hashing  
• HashFS 
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HashFS
• Hash table structure (linear probing) 

• Possible due to no page cache + PM byte addressability 
• Makes sparse, random updates efficient

• Combined block-allocation and file-mapping scheme 
• Insert into hash table implicitly allocates block at corresponding offset 
• Bypasses expensive block allocator management (cf. our paper)
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HashFS (cont.)
• Need to avoid all resizing (incurs high update latency) 

• Must also be a global structure (one structure for all files) 
• Statically allocate max size at creation

• FS optimization: use SIMD for large IO operations 
• Many file system workloads perform large IO operations 
• For efficiency, mapping structures must return ranges of mappings 
• Perform hash table operations in parallel
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(Higher is better!)

HashFS provides +26% throughput!



Conclusions

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

• A rigorous analysis yields insights into performance-shortfalls of 
existing mapping approaches

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

• A rigorous analysis yields insights into performance-shortfalls of 
existing mapping approaches

• We design two new, global file mapping approaches (cuckoo 
hashing, HashFS)

18



Conclusions
• We must re-examine file mapping specifically for PM file 

systems!

• A rigorous analysis yields insights into performance-shortfalls of 
existing mapping approaches

• We design two new, global file mapping approaches (cuckoo 
hashing, HashFS)

• HashFS (our new PM-optimized file mapping approach) 
outperforms the state-of-the-art by up to 45% in real workloads
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