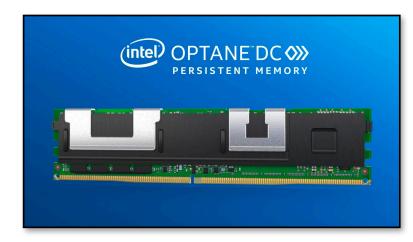
Rethinking File Mapping in Persistent Memory

lan Neal¹, Gefei Zuo¹, Eric Shiple¹, Tanvir Ahmed Khan¹, Youngjin Kwon³, Simon Peter², Baris Kasikci¹

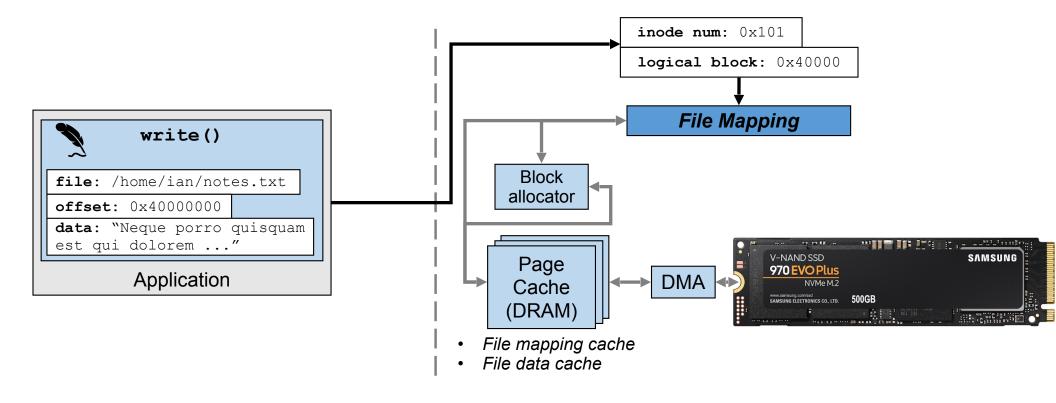


- Great, fast new storage technology called persistent main memory (PM)
 - AKA non-volatile memory (NVM)

- Great, fast new storage technology called persistent main memory (PM)
 - AKA non-volatile memory (NVM)
- 30-40x faster than SSDs

- Great, fast new storage technology called persistent main memory (PM)
 - AKA non-volatile memory (NVM)
- 30-40x faster than SSDs
- File system IO performance has not been able to keep up with PM performance. Why?

- Great, fast new storage technology called persistent main memory (PM)
 - AKA non-volatile memory (NVM)
- 30-40x faster than SSDs
- File system IO performance has not been able to keep up with PM performance. Why?
- No rigorous analysis of IO path performance!



File System

File System

File System

File System

• When devices were slow, FS software overheads

were negligible

File System

File System

Rigorously analyze file mapping in PM

- Rigorously analyze file mapping in PM
- Optimize legacy PM file mapping structures

- Rigorously analyze file mapping in PM
- Optimize legacy PM file mapping structures
- Design new PM-optimized file mapping approaches

- Rigorously analyze file mapping in PM
- Optimize legacy PM file mapping structures
- Design new PM-optimized file mapping approaches
- Evaluate end-to-end performance on real workloads

- Rigorously analyze file mapping in PM
- Optimize legacy PM file mapping structures
- Design new PM-optimized file mapping approaches
- Evaluate end-to-end performance on real workloads

Analysis Overview

Analysis Overview

How is file mapping	
affected by	Design Question
Page caching?	Is page caching necessary?
File size?	Specialize for different file sizes?
IO size?	Optimize for sequential access?
Space utilization?	Make file mapping structure elastic?
Concurrency?	Is ensuring isolation important?
Locality?	Optimize for specific workloads?
Fragmentation?	Make robust against file system aging?
Storage structures?	Can we reuse PM storage structures?
Real workloads?	Are mapping optimizations impactful?

Analysis Overview

How is file mapping	
affected by	Design Question
Page caching?	Is page caching necessary?
File size?	Specialize for different file sizes?
IO size?	Optimize for sequential access?
Space utilization?	Make file mapping structure elastic?
Concurrency?	Is ensuring isolation important?
Locality?	Optimize for specific workloads?
Fragmentation?	Make robust against file system aging?
Storage structures?	Can we reuse PM storage structures?
Real workloads?	Are mapping optimizations impactful?

Analysis Setup

Analysis Setup

- Evaluation setup:
 - Implemented in Strata (SOSP'17)
 - Baseline mapping structure: Extent trees in the page cache (Strata default)
 - Evaluated on 256 GB Intel Optane DC NVDIMMs

Analysis Setup

- Evaluation setup:
 - Implemented in Strata (SOSP'17)
 - Baseline mapping structure: Extent trees in the page cache (Strata default)
 - Evaluated on 256 GB Intel Optane DC NVDIMMs
- Analysis performed using YCSB on LevelDB
 - YCSB: Popular key-value store workload
 - LevelDB: Popular key-value store (used in original Strata evaluation)

Analysis Setup

- Evaluation setup:
 - Implemented in Strata (SOSP'17)
 - Baseline mapping structure: Extent trees in the page cache (Strata default)
 - Evaluated on 256 GB Intel Optane DC NVDIMMs
- Analysis performed using YCSB on LevelDB
 - YCSB: Popular key-value store workload
 - LevelDB: Popular key-value store (used in original Strata evaluation)

Analysis Setup

- Evaluation setup:
 - Implemented in Strata (SOSP'17)
 - Baseline mapping structure: Extent trees in the page cache (Strata default)
 - Evaluated on 256 GB Intel Optane DC NVDIMMs
- Analysis performed using YCSB on LevelDB
 - YCSB: Popular key-value store workload
 - LevelDB: Popular key-value store (used in original Strata evaluation)
- Evaluate on Filebench
 - fileserver (1:2 read/write ratio)
 - webproxy (5:1 read/write ratio)

Contributions

- Rigorously analyze file mapping in PM
- Optimize legacy PM file mapping structures
- Design new PM-optimized file mapping approaches
- Evaluate end-to-end performance on real workloads

Analysis Overview

How is file mapping	
affected by	Design Question
Page caching?	Is page caching necessary?
File size?	Specialize for different file sizes?
IO size?	Optimize for sequential access?
Space utilization?	Make file mapping structure elastic?
Concurrency?	Is ensuring isolation important?
Locality?	Optimize for specific workloads?
Fragmentation?	Make robust against file system aging?
Storage structures?	Can we reuse PM storage structures?
Real workloads?	Are mapping optimizations impactful?

- Analyze 4 different file mapping approaches optimized for PM
- Optimize legacy PM file mapping structures
 - Extent trees (Strata, ext4-DAX)
 - Radix trees (page cache mapping, NOVA)

- Analyze 4 different file mapping approaches optimized for PM
- Optimize legacy PM file mapping structures
 - Extent trees (Strata, ext4-DAX)
 - Radix trees (page cache mapping, NOVA)
- Legacy structures suffered performance degradation on large files, update operations expensive

- Analyze 4 different file mapping approaches optimized for PM
- Optimize legacy PM file mapping structures
 - Extent trees (Strata, ext4-DAX)
 - Radix trees (page cache mapping, NOVA)
- Legacy structures suffered performance degradation on large files, update operations expensive

- Analyze 4 different file mapping approaches optimized for PM
- Optimize legacy PM file mapping structures
 - Extent trees (Strata, ext4-DAX)
 - Radix trees (page cache mapping, NOVA)
- Legacy structures suffered performance degradation on large files, update operations expensive
- Design new PM-optimized file mapping approaches
 - Cuckoo hashing
 - HashFS

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

File Number: 1

Logical Block: 21

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

File Number: 1

Logical Block: 21

①Compute hash

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient

- Hash table structure (linear probing)
 - Possible due to no page cache + PM byte addressability
 - Makes sparse, random updates efficient
- Combined block-allocation and file-mapping scheme
 - Insert into hash table implicitly allocates block at corresponding offset
 - Bypasses expensive block allocator management (cf. our paper)

HashFS (cont.)

HashFS (cont.)

- Need to avoid all resizing (incurs high update latency)
 - Must also be a global structure (one structure for all files)
 - Statically allocate max size at creation

HashFS (cont.)

- Need to avoid all resizing (incurs high update latency)
 - Must also be a global structure (one structure for all files)
 - Statically allocate max size at creation
- FS optimization: use SIMD for large IO operations
 - Many file system workloads perform large IO operations
 - For efficiency, mapping structures must return ranges of mappings
 - Perform hash table operations in parallel

Contributions

- Rigorously analyze file mapping in PM
- Optimize legacy PM file mapping structures
- Design new PM-optimized file mapping approaches
- Evaluate end-to-end performance on real workloads

HashFS provides +26% throughput!

 We must re-examine file mapping specifically for PM file systems!

- We must re-examine file mapping specifically for PM file systems!
- A rigorous analysis yields insights into performance-shortfalls of existing mapping approaches

- We must re-examine file mapping specifically for PM file systems!
- A rigorous analysis yields insights into performance-shortfalls of existing mapping approaches
- We design two new, global file mapping approaches (cuckoo hashing, HashFS)

- We must re-examine file mapping specifically for PM file systems!
- A rigorous analysis yields insights into performance-shortfalls of existing mapping approaches
- We design two new, global file mapping approaches (cuckoo hashing, HashFS)
- HashFS (our new PM-optimized file mapping approach) outperforms the state-of-the-art by up to 45% in real workloads

Thank you!

Corresponding Author: Ian Neal

iangneal@umich.edu

https://about.iangneal.io

