
Pattern-Guided File Compression with User-Experience Enhancement

for Log-Structured File System on Mobile Devices

19th USENIX Conference on File and Storage Technologies
February 23–25, 2021

Cheng Ji§, Li-Pin Chang※, Riwei Pan♯, Chao Wu♯, Congming Gao*, Liang Shi¶, Tei-Wei Kuo♯, Chun Jason Xue♯

§Nanjing University of Science and Technology ※National Chiao Tung University
♯City University of Hong Kong *Tsinghua University ¶East China Normal University

￭Background and Motivation

￭Pattern-Guided File Compression

￭ Implementation

￭Evaluation

￭Conclusion

Overview

Mobile Device Popularity

Mobile devices are everywhere!

Write Pressure on Mobile Systems

◆ More data are filling in, but storage has its limit

Poor Performance and Lifetime

Insufficient storage space

Excessive write traffic
文件系统

File
System

Flash
Devices

More Data Writes
1

2

How to perform the compression to solve the above problem

Read and Write Pattern

◆File writes and reads of mobile application

File read/writes were small and bound for fragmented file offsets

Two Main sources of reads/writes
SQLite and *.apk files

1

2

50% writes ≤ 16 KB

90% reads were one page

Write ≤ 16 KB

(Unit: 4KB page)

Limitation of Previous Compression

◆Compression file system: JFFS2 (read-write)

File System

1 2 7 8 20

12 7 8 20

File Space

file write operations

Sequential compression on small file writes suffered from
ineffective space saving

Sequential compression method
• File blocks of consecutive offsets are

compressed in the same storage block

Compression

Poor space utilization

Limitation of Previous Compression

◆Compression file system: EROFS (read-only)

File System 1 3 9

File Space

file read operations

Decompression on small file reads after sequential compression
amplifies the read overhead

Sequential compression method
• Need to decompress unnecessary data

Decompression

……2 4 5

1 4 9

10 11

Increased block read frequency

File Pattern-Guided Compression (FPC)

File
System

Main
Memory

10 21

10
11

Foreground
compression

21

22

23

Background
compression

Write data

Segment Segment Segment

11 2322

invalid

valid

◆ Foreground compression

• Address small file writes
• Reduced write pressure

◆ Background compression

• Address small file reads
• Reduced space pressure and

read penalty

Highly optimized for mobile I/O patterns

Foreground Compression

◆SQLite produces many small writes with random file offsets

◆Allow random writes to be stored in the same physical block

File System

1 2 7 8 20

12 7 8 20

File Space

file write operations

Sequential compression

Compression

12 7 8 20 Our solution
• High block space utilization

Background Compression

◆Compression can save space but read penalty is unacceptable
• Fragmented reads on executable files during app launching

• Highly predictable read pattern for app launching

Read-critical data: exactly required to launch an application in executable files

Background Compression

◆ Compression provides an opportunity reorganizing necessary file blocks
• Reshape the read patterns for better decompression efficiency

File System 1 3 9

File Space

file read operations

Sequential compression

Decompression

2 4 5

1 4 9

1 4 9 Our solution
• Compress and compact

read-critical read data

10 11…

Implementation with Log-structured File System

◆PFC is implemented based on F2FS (LFS for mobile devices)
• Compression-friendly when out-of-place updating compressed data

• Avoid write amplification due to changed compression ratios

Updating the compressed blocks (B3 and B5) on LFS

1 3 5
PBN
100

Old block

Valid Invalid

Update B3, B5

3
After

PBN
100

101

102

3 5

Physical block

1 2 3 4

1

5 6 7 ...

...

Segm
en

t

3

File A

...

File Space

File System

5
5

Enhanced File Indexing

◆Challenge: Mapping of compressed logical blocks

◆Solution: Extend the logical-to-physical (L2P) mapping table

PBN 200

LBN flag
10 1
11 1
12 1

idx
1
2
3

10 11 12

21 01

Uncompressed block

LBN flagidx

inode

PBN
200
200
200

PBN
210

PBN 210cn
t

of
fs

et

of
fs

et

o
ff

se
t

Header Compressed blocks

Augment direct pointers in inode/direct node:
Largest file size decreases from 3.94 TB to 3.50 TB

L2P mapping and physical block layout

Enhanced Block State Tracking

◆Challenge: Partially invalidated after write operations

◆Solution: Track the valid/invalid status of compressed blocks

B
lo

ck
 S

ta
te T

a
b

le

• For a 16 GB storage space, space overhead is 4 MB

Invalid num

0
0
0

Bitmap

1 1 X X X
1 1 1 1 X
1 1 1 X X

PBN

... ...

200

Invalid

valid

201

202

...

PBN

200
201
202

...

Segment

Invalid num

1
2
1

Bitmap

1 0 X X X
0 0 1 1 X
0 1 1 X X

PBN

... ...

200

Invalid

valid

201

202

...

PBN

200
201
202

...

Segment

• Five compressed file blocks in one physical block
3 bits for counting invalid compressed blocks
5 bits for block invalid bitmap

Decompression with P2L Mapping

P2L mapping

inode
55
55
55

PBN
100
100
100

55101

Physical block

1 2 3 ... 20 21 ...

Segm
en

t

LBN
1
3

20
21

Inode 55
File Space

File System

valid
1
1
1
1

1 3

28 ...

55101 28 1

PBN

100

101

102

...

20

2821

◆Exploit the P2L mapping of LFS for decompression speedup
• Decompressing all the compressed blocks in the same physical block together

Decompression speedup for read-critical blocks

1 3 20

21 28Read 100

Read

Prefetch 100

101
101Prefetch

Experiment Setups

• Prototype on a mobile platform Hikey 960
• 8-core ARM processor, 4GB of RAM, and a 32GB UFS

• The Android and Linux kernel versions were 9.0 and 4.9

• File System: F2FS; Compression algorithm: LZO;

• Three related methods were evaluated
• Original F2FS (Baseline), conventional compression (Comp), the proposed FPC

• The evaluation was based on a set of popular mobile applications
• App scenarios: SQLite writes for FC, application launching for BC

• Metrics: Write traffic/latency, launching times, file size, etc.

◆ Results of SQLite write volume and write latency

2. A large write reduction with compression is beneficial to reducing write latency

0

0.2

0.4

0.6

0.8

1

1.2

W
ri

te
 V

o
lu

m
e

Baseline Comp FPC

0

0.2

0.4

0.6

0.8

1

1.2

W
ri

te
 L

at
en

cy

Baseline Comp FPC

1. Compressing random write data tightly improved the write reduction

Experimental Results

4
7.5

%

7.1%

Sensitive Study on Compression Ratio

◆ Sensitive study of write latency and energy consumption

Data are not compressed for compression ratio of 1

0

200

400

600

800

1000

1200

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.6 0.8 1

To
tal W

rite Laten
cy (m

s)

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
u

J/
K

B
)

Compression Ratio

32KB-Energy 128KB-Energy 32KB-Latency 128KB-Latency

When data were highly compressible, compression benefited both
write latency and energy consumption

Experimental Results

◆ Results of perceived latencies

• Block read count and application launching time

Read-critical data are compacted/compressed leading to a fewer number of block read

0

500

1000

1500

A
p

p
 L

au
n

ch
in

g
Ti

m
e

(m
s)

Baseline Comp FPC

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
 R

ea
d

 N
u

m
b

er

Baseline Comp FPC

14.8

17.7

Experimental Results

◆ Results of total file sizes

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

u
ta

b
le

 F
ile

 S
iz

es

Baseline Comp FPC

FPC outperformed the Comp by allowing large compression windows

23.7%

The total size of executable file was reduced from 846 MB to 646 MB

Conclusion

◆ I/O pattern of mobile devices necessitates the optimization of

compression policies for enhanced compression efficacy

◆ Prototyped the FPC on the real mobile platform
• Proposed a foreground compression to compress online incoming small writes

• Proposed a background compression to compress offline data with considering

read performance

◆ Showed the advantage of FPC against previous approaches

Thank you!
cheng.ji@njust.edu.cn

Pattern-Guided File Compression with User-Experience Enhancement for
Log-Structured File System on Mobile Devices

Cheng Ji§, Li-Pin Chang※, Riwei Pan♯, Chao Wu♯, Congming Gao*, Liang Shi¶, Tei-Wei Kuo♯, Chun Jason Xue♯

§Nanjing University of Science and Technology ※National Chiao Tung University
♯City University of Hong Kong *Tsinghua University ¶East China Normal University

