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Mobile Device Popularity

Mobile devices are everywhere!
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Write Pressure on Mobile Systems

€ More data are filling in, but storage has its limit

Applications

More Data Writes
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How to perform the compression to solve the above problem
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Read and Write Pattern

& File writes and reads of mobile application
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Two Main sources of reads/writes
SQLite and *.apk files

File read/writes were small and bound for fragmented file offsets



Limitation of Previous Compression

€ Compression file system: JFFS2 (read-write)

file write operations
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File System *Sequential compression method

! ! ! * File blocks of consecutive offsets are
compressed in the same storage block

Poor space utilization

Sequential compression on small file writes suffered from
ineffective space saving




Limitation of Previous Compression

€ Compression file system: EROFS (read-only)

file read operations

File System

File Space
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* Sequential compression method
* Need to decompress unnecessary data

Increased block read frequency

Decompression on small file reads after sequential compression

amplifies the read overhead




File Pattern-Guided Compression (FPC)

Write data |

Foreground
compression

Background
compression

Segment

Segment Segment )

€ Foreground compression

 Address small file writes
* Reduced write pressure

€ Background compression

- Address small file reads
* Reduced space pressure and
read penalty

Highly optimized for mobile I/O patterns



Foreground Compression

€ SQLite produces many small writes with random file offsets
& Allow random writes to be stored in the same physical block

file write operations
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| € Our solution

* High block space utilization




Background Compression

€ Compression can save space but read penalty is unacceptable
 Fragmented reads on executable files during app launching
« Highly predictable read pattern for app launching

®)
o
0
3 || I L THEH T
()
(C T T T T T T
Y0 2000 4000 6000 8000 10000 12000 14000
Q
1N 1Nl
o
el
c
(@ T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
—
Q
(@)]
C
2| | I e . 1]
wn
wn
) T T T T T
=0 2000 4000 6000 8000 10000 12000

Read-critical data: exactly required to launch an application in executable files




Background Compression

€ Compression provides an opportunity reorganizing necessary file blocks
« Reshape the read patterns for better decompression efficiency

File System

file read operations
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* Our solution

* Compress and compact
read data



Implementation with Log-structured File System

€ PFC is implemented based on F2FS (LFS for mobile devices)

Compression-friendly when out-of-place updating compressed data
Avoid write amplification due to changed compression ratios
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Updating the compressed blocks (B3 and B5) on LFS



Enhanced File Indexing

& Challenge: Mapping of compressed logical blocks
€ Solution: Extend the logical-to-physical (L2P) mapping table

L2P mapping and physical block layout

: inode :
{  [[BN]PBN [ idx [ flag |
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Augment direct pointers in inode/direct node:
Largest file size decreases from 3.94 TB to 3.50 TB



Enhanced Block State Tracking

€ Challenge: Partially invalidated after write operations
& Solution: Track the valid/invalid status of compressed blocks

5 bits for block invalid bitmap
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* For a 16 GB storage space, space overhead is 4 MB

Segment



Decompression with P2L Mapping

& Exploit the P2L mapping of LFS for decompression speedup

« Decompressing all the compressed blocks in the same physical block together
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Decompression speedup for read-critical blocks



Experiment Setups

* Prototype on a mobile platform Hikey 960
« 8-core ARM processor, 4GB of RAM, and a 32GB UFS
* The Android and Linux kernel versions were 9.0 and 4.9
* File System: F2FS; Compression algorithm: LZO;

 Three related methods were evaluated
« Original F2FS (Baseline), conventional compression (Comp), the proposed FPC

 The evaluation was based on a set of popular mobile applications
« App scenarios: SQLite writes for FC, application launching for BC
* Metrics: Write traffic/latency, launching times, file size, etc.



Experimental Results

€ Results of SQLite write volume and write latency
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1. Compressing random write data tightly improved the write reduction

2. A large write reduction with compression is beneficial to reducing write latency



Sensitive Study on Compression Ratio

€ Sensitive study of write latency and energy consumption
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Experimental Results

€ Results of perceived latencies
* Block read count and application launching time
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Read-critical data are compacted/compressed leading to a fewer number of block read



Experimental Results

&€ Results of total file sizes
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The total size of executable file was reduced from 846 MB to 646 MB

> 23.7%

Executable File Sizes

FPC outperformed the Comp by allowing large compression windows



Conclusion

€ |/O pattern of mobile devices necessitates the optimization of
compression policies for enhanced compression efficacy

€ Prototyped the FPC on the real mobile platform
* Proposed a foreground compression to compress online incoming small writes
* Proposed a background compression to compress offline data with considering
read performance

€ Showed the advantage of FPC against previous approaches



Thank you!

cheng.ji@njust.edu.cn

Pattern-Guided File Compression with User-Experience Enhancement for
Log-Structured File System on Mobile Devices

Cheng Ji ®, Li-Pin Chang*, Riwei Pan”, Chao Wu?, Congming Gao", Liang Shi", Tei-Wei Kuo”, Chun Jason Xue*

¥ Nanjing University of Science and Technology *National Chiao Tung University
#City University of Hong Kong *Tsinghua University TEast China Normal University




