19th USENIX Conference on File and Storage Technologies Fﬂs -T|
21

February 23-25, 2021

Pattern-Guided File Compression with User-Experience Enhancement
for Log-Structured File System on Mobile Devices

Cheng Ji ®, Li-Pin Chang*, Riwei Pan”, Chao Wu?, Congming Gao", Liang Shi", Tei-Wei Kuo”, Chun Jason Xue*

¥ Nanjing University of Science and Technology *National Chiao Tung University
#City University of Hong Kong *Tsinghua University TEast China Normal University

=" Background and Motivation

= Pattern-Guided File Compression
" Implementation

= Evaluation

® Conclusion

Mobile Device Popularity

Mobile devices are everywhere!

aNo=10ID

Write Pressure on Mobile Systems

€ More data are filling in, but storage has its limit

Applications

More Data Writes

2 L) " 'y
Bxta P File Excessive write traffic
F2FS =| 2 2 System | i x|

_ » "

) . Poor Performance and Lifetime
Flash

. Devices

How to perform the compression to solve the above problem

1 [nsufficient storage space

—
?
——

Read and Write Pattern

& File writes and reads of mobile application

@1 @2 O3 E4 [0 >4 (Unit: 4KB page)

100%

80%

G 50% writes < 16 KB

60%

40%

e 90% reads were one page

20%

0%

Write Read | Write Read | Write Read | Write Read | Write Read

Facebook | Messenger G. Earth Firefox Reddit

Two Main sources of reads/writes
SQLite and *.apk files

File read/writes were small and bound for fragmented file offsets

Limitation of Previous Compression

€ Compression file system: JFFS2 (read-write)

file write operations

| 4 3 &

-

File System *Sequential compression method

! ! ! * File blocks of consecutive offsets are
compressed in the same storage block

Poor space utilization

Sequential compression on small file writes suffered from
ineffective space saving

Limitation of Previous Compression

€ Compression file system: EROFS (read-only)

file read operations

File System

File Space

\ 4

\ 4

J \

<—————~

o = = =

* Sequential compression method
* Need to decompress unnecessary data

Increased block read frequency

Decompression on small file reads after sequential compression

amplifies the read overhead

File Pattern-Guided Compression (FPC)

Write data |

Foreground
compression

Background
compression

Segment

Segment Segment)

€ Foreground compression

 Address small file writes
* Reduced write pressure

€ Background compression

- Address small file reads
* Reduced space pressure and
read penalty

Highly optimized for mobile I/O patterns

Foreground Compression

€ SQLite produces many small writes with random file offsets
& Allow random writes to be stored in the same physical block

file write operations

|4 ! 2 &
File Space : ‘ L

-’
-
-
R
-
-

3
File System]

| o Sequential compression

| € Our solution

* High block space utilization

Background Compression

€ Compression can save space but read penalty is unacceptable
 Fragmented reads on executable files during app launching
« Highly predictable read pattern for app launching

®)
o
0
3 || I L THEH T
()
(C T T T T T T
Y0 2000 4000 6000 8000 10000 12000 14000
Q
1N 1Nl
o
el
c
(@ T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
—
Q
(@)]
C
2| | I e . 1]
wn
wn
) T T T T T
=0 2000 4000 6000 8000 10000 12000

Read-critical data: exactly required to launch an application in executable files

Background Compression

€ Compression provides an opportunity reorganizing necessary file blocks
« Reshape the read patterns for better decompression efficiency

File System

file read operations

$& (¥ ¥

-
-
- -
- -
. -
-

File Space

4 Sequential compression

* Our solution

* Compress and compact
read data

Implementation with Log-structured File System

€ PFC is implemented based on F2FS (LFS for mobile devices)

Compression-friendly when out-of-place updating compressed data
Avoid write amplification due to changed compression ratios

File A 1 2

File Space

Old block
PBN —m*—

100 11315

Valid

Update B3, B

-

B)

3

5

Invalid

PBN
5 100

After 101
—

102

File System

113]5

\

3 5

g

)

Physical blo

ck

1uawidas

Updating the compressed blocks (B3 and B5) on LFS

Enhanced File Indexing

& Challenge: Mapping of compressed logical blocks
€ Solution: Extend the logical-to-physical (L2P) mapping table

L2P mapping and physical block layout

: inode :
{ [[BN]PBN [idx [flag |
5 10 | 200 | 1 1 LBN | PBN | idx | flag|
: 11 J200] 2 | 1 21 210l 1] O :
: 12 J200] 3 | 1 5
Heqder Compress'ed blocks
PBN 200k 10 | 11 1)2|J PBN 210| Uncompressed block

Augment direct pointers in inode/direct node:
Largest file size decreases from 3.94 TB to 3.50 TB

Enhanced Block State Tracking

€ Challenge: Partially invalidated after write operations
& Solution: Track the valid/invalid status of compressed blocks

5 bits for block invalid bitmap

PBN [Invalid num| Bitmap %’-
200 Q 1aXXX |@ °* Five compressed file blocks in one physical block
201 @011X g 3 bits for counting invalid compressed blocks
202 0] M11XX :
&
®

* For a 16 GB storage space, space overhead is 4 MB

Segment

Decompression with P2L Mapping

& Exploit the P2L mapping of LFS for decompression speedup

« Decompressing all the compressed blocks in the same physical block together

lnode55 | 1 | 2|3]|..120]21]..1]28 .
File Space
PBN File System
_ _ ol 1 320
inode | valid -
Read mp S (Gl 21 28 |
Prefetch { 22 1 102 03a
55 1 ®
Read mp 55 | 1 >
Prefetch{ 55 1 \ |
P2L mapping Physic'al block

Decompression speedup for read-critical blocks

Experiment Setups

* Prototype on a mobile platform Hikey 960
« 8-core ARM processor, 4GB of RAM, and a 32GB UFS
* The Android and Linux kernel versions were 9.0 and 4.9
* File System: F2FS; Compression algorithm: LZO;

 Three related methods were evaluated
« Original F2FS (Baseline), conventional compression (Comp), the proposed FPC

 The evaluation was based on a set of popular mobile applications
« App scenarios: SQLite writes for FC, application launching for BC
* Metrics: Write traffic/latency, launching times, file size, etc.

Experimental Results

€ Results of SQLite write volume and write latency

O Baseline Il Comp W FPC OBaseline @Comp EFPC

1.2 1.2 A\
=
5 08 | 3 08 | N >
&) ©
> —
- 0.6
:'q_-.,) 0.6 g
§ 0.4 t ; 0.4
0.2 r 0.2
0 0
N\ < Q + X - < Q 3 N .
o < D o o %) 2 0) S &
i Q « O

1. Compressing random write data tightly improved the write reduction

2. A large write reduction with compression is beneficial to reducing write latency

Sensitive Study on Compression Ratio

€ Sensitive study of write latency and energy consumption

[32KB-Energy [C1128KB-Energy -+ 32KB-Latency -@-128KB-Latency

50 1200

o0

< o
S a0 1 1000 §
5 1 800 3
2 30 o
£ 1 600 &
e 20 r L
S {1 400 2
> —
aw 10 3
o 4 200 o
[y

(NN}

0 0

0 0.1 0.2 0.3 0.4 0.6 0.8 1
Compression Ratio

Data are not compressed for compression ratio of 1

Experimental Results

€ Results of perceived latencies
* Block read count and application launching time

. [OBaseline ®@Comp MFPC 10 OBaseline ®Comp WFPC
£1500 T 1‘)
—~ v
GEJ JEJ 0.8
1000 | >
o Z 0.6
k= i
-é L o4
S5 500 x
8 5 0.2
Q. [aa)
Q.
< O 0.0
N $X0 F @ <R X e & <R F % e CQ X 2
(o) < X <O) Q 2 Q2 (o) < 0 o) O Q 2 o
oéoo %é\% & ¢ & Qg/b S i 4&‘- @oj;’b \$e5\'° *O((\ (’éoo e‘?’(\% & Q\‘é\ Qg’b o /\éé @ng’ \$®c§° \Q@Q
@ W@ & ¢ @& N ¢
W N N\ N

Read-critical data are compacted/compressed leading to a fewer number of block read

Experimental Results

&€ Results of total file sizes

10 [0 Baseline B Comp W FPC

0.8 |
0.6
04 r
0.2 |
0.0 U
Q&

The total size of executable file was reduced from 846 MB to 646 MB

> 23.7%

Executable File Sizes

FPC outperformed the Comp by allowing large compression windows

Conclusion

€ |/O pattern of mobile devices necessitates the optimization of
compression policies for enhanced compression efficacy

€ Prototyped the FPC on the real mobile platform
* Proposed a foreground compression to compress online incoming small writes
* Proposed a background compression to compress offline data with considering
read performance

€ Showed the advantage of FPC against previous approaches

Thank you!

cheng.ji@njust.edu.cn

Pattern-Guided File Compression with User-Experience Enhancement for
Log-Structured File System on Mobile Devices

Cheng Ji ®, Li-Pin Chang*, Riwei Pan”, Chao Wu?, Congming Gao", Liang Shi", Tei-Wei Kuo”, Chun Jason Xue*

¥ Nanjing University of Science and Technology *National Chiao Tung University
#City University of Hong Kong *Tsinghua University TEast China Normal University

