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Mobile Device Popularity

Mobile devices are everywhere!



Write Pressure on Mobile Systems

◆ More data are filling in, but storage has its limit

Poor Performance and Lifetime

Insufficient storage space

Excessive write traffic
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How to perform the compression to solve the above problem



Read and Write Pattern

◆File writes and reads of mobile application 

File read/writes were small and bound for fragmented file offsets 

Two Main sources of reads/writes  
SQLite and *.apk files
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50% writes ≤ 16 KB

90% reads were one page

Write ≤ 16 KB

(Unit: 4KB page)



Limitation of Previous Compression  

◆Compression file system: JFFS2 (read-write)

File System
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file write operations

Sequential compression on small file writes suffered from 
ineffective space saving 

Sequential compression method
• File blocks of consecutive offsets are 

compressed in the same storage block

Compression

Poor space utilization 



Limitation of Previous Compression  

◆Compression file system: EROFS (read-only)
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File Space

file read operations

Decompression on small file reads after sequential compression 
amplifies the read overhead

Sequential compression method
• Need to decompress unnecessary data
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File Pattern-Guided Compression (FPC)
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◆ Foreground compression 

• Address small file writes 
• Reduced write pressure

◆ Background compression

• Address small file reads
• Reduced space pressure and 

read penalty

Highly optimized for mobile I/O patterns



Foreground Compression

◆SQLite produces many small writes with random file offsets

◆Allow random writes to be stored in the same physical block

File System
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file write operations

Sequential compression

Compression

12 7 8 20 Our solution
• High block space utilization



Background Compression

◆Compression can save space but read penalty is unacceptable
• Fragmented reads on executable files during app launching

• Highly predictable read pattern for app launching

Read-critical data: exactly required to launch an application in executable files



Background Compression

◆ Compression provides an opportunity reorganizing necessary file blocks
• Reshape the read patterns for better decompression efficiency
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Decompression

2 4 5

1 4 9

1 4 9 Our solution
• Compress and compact 

read-critical read data

10 11…



Implementation with Log-structured File System

◆PFC is implemented based on F2FS (LFS for mobile devices)
• Compression-friendly when out-of-place updating compressed data

• Avoid write amplification due to changed compression ratios

Updating the compressed blocks (B3 and B5) on LFS
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Enhanced File Indexing

◆Challenge: Mapping of compressed logical blocks

◆Solution: Extend the logical-to-physical (L2P) mapping table
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Augment direct pointers in inode/direct node: 
Largest file size decreases from 3.94 TB to 3.50 TB

L2P mapping and physical block layout 



Enhanced Block State Tracking

◆Challenge: Partially invalidated after write operations

◆Solution: Track the valid/invalid status of compressed blocks
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• For a 16 GB storage space, space overhead is 4 MB
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• Five compressed file blocks in one physical block
3 bits for counting invalid compressed blocks 
5 bits for block invalid bitmap



Decompression with P2L Mapping

P2L mapping
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◆Exploit the P2L mapping of LFS for decompression speedup
• Decompressing all the compressed blocks in the same physical block together

Decompression speedup for read-critical blocks
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Experiment Setups

• Prototype on a mobile platform Hikey 960
• 8-core ARM processor, 4GB of RAM, and a 32GB UFS 

• The Android and Linux kernel versions were 9.0 and 4.9

• File System: F2FS; Compression algorithm: LZO; 

• Three related methods were evaluated
• Original F2FS (Baseline), conventional compression (Comp), the proposed FPC

• The evaluation was based on a set of popular mobile applications
• App scenarios: SQLite writes for FC, application launching for BC

• Metrics: Write traffic/latency, launching times, file size, etc.



◆ Results of SQLite write volume and write latency

2. A large write reduction with compression is beneficial to reducing write latency
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1. Compressing random write data tightly improved the write reduction
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Sensitive Study on Compression Ratio

◆ Sensitive study of write latency and energy consumption

Data are not compressed for compression ratio of 1
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When data were highly compressible, compression benefited both 
write latency and energy consumption



Experimental Results

◆ Results of perceived latencies

• Block read count and application launching time

Read-critical data are compacted/compressed leading to a fewer number of block read
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Experimental Results

◆ Results of total file sizes
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FPC outperformed the Comp by allowing large compression windows

23.7%

The total size of executable file was reduced from 846 MB to 646 MB 



Conclusion

◆ I/O pattern of mobile devices necessitates the optimization of 

compression policies for enhanced compression efficacy

◆ Prototyped the FPC on the real mobile platform 
• Proposed a foreground compression to compress online incoming small writes 

• Proposed a background compression to compress offline data with considering 

read performance 

◆ Showed the advantage of FPC against previous approaches
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