
pFSCK: Accelerating Filesystem Checking 
and Repair for Modern Storage

David Domingo, Sudarsun Kannan
Rutgers University Department of Computer Science



Storage Issues: A Situation

1

§ You frequently use your personal computer, home server, or production server

§ System won’t boot after a reboot due to update, restart, or crash

§ Forced to run file system checker (ex. e2fsck for EXT4)

§ Takes a long time to complete resulting in large downtime and decreased productivity



Storage Issues: Faster Storage

2

§ Utilize faster modern storage to reduce runtime and make things easier 

§ Flash wear increases over time and errors inevitably come up

§ Still a hassle and takes long (why?)

§ Should run the file system checker proactively to find errors at the cost of availability



Storage Issues: Not a Coincidence

3

§ Frustrating usability is not a rare occurrence

§ File system checking has shown to be notoriously slow



Storage Solution: Faster checking with pFSCK

4

§ pFSCK provides faster checking runtimes 

§ Shows up to 2.6x improvement over vanilla e2fsck (EXT checker) and 1.8x – 8x

improvement over xfs_repair (XFS checker)

• Parallelizes file system checkers at a fine granularity (e.g. inodes)

• Ensures correctness through logical reordering

• Adapts to file system configurations with dynamic thread scheduling



Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

5



Background: Providing Storage Reliability

6

§ File Systems Checkers

§ Utilize Modern Storage

§ Utilize Modern Consistency Mechanisms

• Larger bandwidth and lower latencies
• Provides faster scanning and checking

• Journaling

• Copy on Write

• Erasure Coding

• Replication

Cannot detect silent bit corruption

Reconstruction and re-sharding quite
time consuming

high density storage (e.g. MLC) prone 
to cell wear and bit corruption

Not always economically feasible

• Typically used after kernel/security upgrades and crashes

• Provides ultimate data reliability and recovery

Traditional file system checking is still relevant!

unoptimized to exploit CPU/disk 
parallelism



Background: Disk Layout and Checking

7

§ Linux EXT block group layout

§ e2fsck (EXT checker) scans through all file system metadata 

§ builds own view of file system in order to detect and fix inconsistencies

§ Consists of 5 logical passes:

1. Inodes Pass: Checks inodes (file and directory inodes)

2. Directories Pass: Checks directories

3. Connectivity Pass: Checks file reachability

4. Ref Counts Pass: Verifies link counts for all files
5. Cylinders Pass: Verifies cylinder group information

Super
Block

Group
Desc.

Block
Bitmap

Inode
Bitmap

Inode Table Data Blocks



Background: Prior Works

8

parallelization 
limited to 
coarse 
granularity 

§ e2fsck: Parallelizes file system checking across disks/partitions

§ xfs_repair : Parallelizes file system checking across allocation groups

§ FFsck (FAST ‘13): 

§ ChunkFS (HotDep ‘06): 

§ SQCK (OSDI ‘08): 

requires extensive 
modification to 
the file system

requires complete 
overhaul of file 
system checker

• Modifies file system and rearranges metadata blocks 
• Provides faster scanning by rearranges metadata blocks 

• Partitions file system into smaller isolated groups
• Allows groups to be repaired in isolation

• Uses declarative queries and databases for consistency checks
• Allows for more expressive fixes with comparable run times



Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

9



Evaluating Current e2fsck Performance

10

§ System:

§ Methodology: 

• Dual Intel® Xeon® Gold 5218 @ 2.30GHz

• 64 GB of memory 

• 1TB NVMe Flash Storage

1. Varying file count (file size constant at 12kb, created across 5 directories)

2. Varying directory count (1 file per directory, each file 24kb)

• e2fsck against 840 GB file systems of varying configurations



File System Sensitivity

11

§ Majority of time is spent checking inodes and directory metadata

§ Directory-intensive file systems take significantly longer than a file-intensive file system

§ Runtime scales linearly with file system utilization

0
20
40
60
80

100
120
140

10 20 30 40 50

R
un

tim
e 

(s
ec

on
ds

)

File Count (millions)

0

100

200

300

400

500

600

5 10 15 20 25

R
un

tim
e 

(s
ec

on
ds

)

Directory Count (millions)

Inodes Pass Directories Pass Connectivity Pass Ref Counts Pass Cylinders Pass



Research Questions

12

§ How to speed up file system checking and repair without compromising correctness?

§ How to adapt for different file system configurations? 
• ex. file-intensive vs directory-intensive



pFSCK Key Ideas

13

§ Parallelize file system checking at finer granularity (ex. inodes, directories)

1. Overlap as much independent logical checks within each pass

2. Overlap as much logical checks across passes

3. Reduce contention on shared data structures

4. Efficient management of work for threads across passes



Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

14



Serial Execution in e2fsck

15

Inodes Pass

Inode List

§ Serially checks file system metadata (ex. inodes)

§ Updates global data structures to generate view of file system

§ Generates work for the next pass (ex. list of directory block)

Blocks 
Bitmap

Global Data Structures

Directory 
Blocks

Directories Pass Connectivity Pass
111100



pFSCK Data Parallelism

16

Inodes Pass

Inode List

§ Split metadata within each pass into smaller groups

§ Uses a pool of threads to check in parallel and generate intermediate lists

§ Aggregate lists and repeat

§ Critical, unisolated data structures limits potential concurrency (e.g. block bitmap)

Blocks 
Bitmap

Global Data Structures

Directory 
Blocks

Directories Pass Connectivity Pass
111100



pFSCK Pipeline Parallelism

17

§ Allow multiple passes to operate in parallel to hide synchronization bottlenecks

§ Turn each pass into independent flows of execution

§ Use per pass queues and thread pools

§ Continuously feed subsequent passes with metadata

§ Do not wait for previous pass to complete (speculatively carry out future checks)

Inodes Pass Directories Pass

Inode List

Thread Pool Thread Pool



Pipeline Parallelism: Work Imbalance

18

§ Differing metadata densities causes uneven pass queues

§ Not straight forward how many threads to assign to each pass

§ Example:

Directory-intensive file system mainly will have more directory blocks to check

Inodes Pass Directories Pass

Inode List
Thread Pool Thread Pool

Significant amount of
directory blocks 
to check

More threads than
needed to check
Inodes



Solution: Dynamic Thread Scheduling

19

§ Scheduler thread periodically samples the task queue lengths of each pass

§ Calculates relative work among the passes and redistributes threads

§ Allows pFSCK to adapt to different file system configurations with differing metadata densities

Inodes Pass Directories Pass

Inode List

Thread Pool Thread Pool

Scheduler Thread

Total Work =

4 8

Inodes Proportion =
Dirs Proportion =
Inode Threads =

Total Threads = 3

Dir Threads =

12
4 /12 
8 /12 

1
2



More in Paper

20

§ Resource-Aware Scheduling for Online 
Checking Support

§ Error handling

§ Delayed dependent checks

§ Other optimizations



Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

21



Methodology

22

§ System:

§ Tools:

§ File System Configurations:

• Dual Intel® Xeon® Gold 5218 @ 2.30GHz, 64GB of DDR memory, 1TB 
NVMe Flash Storage

• e2fsck (e2fsprogs release v1.44.4)

• xfs_repair (xfsprogs release 4.9.0)

• pFSCK (our system)

• File-Intensive FS (99% files to 1% directories)

• Directory-Intensive FS (50% files to 50% directories) (see paper)



Evaluation: Data Parallelism

23

§ Improves performance over vanilla e2fsck by up to 1.9x (4 Threads) 

§ Improves performance over xfs_repair by up to 1.8x – 8x with same thread count

§ Contention on shared structures limits data parallelism scaling

0
25
50
75

100
125
150

1 2 4 8 16

R
un

tim
e 

(s
ec

)

Thread Count

e2fsck pFSCK[datapara] xfs_repair

§ pFSCK’s data parallelism compared to vanilla e2fsck and xfs_repair

569 550 548 564 564

1.9x

1.8-8x



Evaluation: Pipeline Parallelism and 
Dynamic Thread Scheduler

24

§ Pipeline parallelism increases performance by 1.3x over just data parallelism

§ Dynamic Thread Scheduler automatically identifies optimal thread assignment

§ pFSCK[sched] automatically improves performance by up to 2.6x over vanilla e2fsck

0

25

50

75

100

125

1 2 4 8 16

R
un

 t
im

e 
(s

ec
)

Thread Count

e2fsck pFSCK[datapara] pFSCK[pipeline] pFSCK[sched]

§ Pipeline parallelism and dynamic thread scheduling compared to just data parallelism

1.3x

2.6x



More in Paper

25

§ More File System Configuration Analysis

§ Memory Usage and I/O Throughput Analysis 

§ Resource-Aware Scheduling Performance

§ Performance on SSD

§ Error Fixing Performance



Outline
Introduction

Background

Motivation

pFSCK Design

Evaluation

Summary

26



Summary

27

§ pFSCK provides fine grained parallelism for file system checking

§ Data parallelism allows more metadata to be checked at a time

§ Pipeline parallelism enables parallelism across passes

§ Dynamic thread scheduler adapts to file system configuration

§ pFSCK is provides up to 2.6x performance over vanilla e2fsck



Thank You!

28

David Domingo
djd240@cs.rutgers.edu

Sudarsun Kannan
sudarsun.kannan@cs.rutgers.edu


