
Scalable Persistent Memory File System with
Kernel-Userspace Collaboration

Youmin Chen, Youyou Lu, Bohong Zhu,

Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†, Jiwu Shu

Tsinghua University †University of Wisconsin - Madison

Persistent Memory

Core 1

Core 2

La
st

 L
ev

el
 C

ac
he

iMC

iMC

Core N

XP DIMM

DRAM

XP DIMM

DRAM

XP DIMM

DRAM

D
R

A
M

D
R

A
M

D
R

A
M

X
P

D
IM

M

X
P

D
IM

M

X
P

D
IM

M

…

Memory Mode

AppDirect Mode

Images are reshaped from “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory”, FAST’20

v Hardware Features
v Byte-addressability (attached to memory bus)
v Data persistence (like hard disks)
v High performance (high bandwidth, low latency)

v Intel Optane DC Persistent Memory
v Commercially available in 2019
v Read: 6.7 GB/s per DIMM
v Write: 2.3 GB/s per DIMM
v App-Direct Mode vs. Memory Mode

Persistent Memory File Systems

D
R

A
M

D
R

A
M

D
R

A
M

X
P

D
IM

M

X
P

D
IM

M

X
P

D
IM

M

Load/Store

read write mmapopen close

File SystemPM-aware

block device layer

page cache

Except for file-based APIs, more
expectations…
v High performance

v Low software overhead
v Efficient space mgmt.
v Light-weight consistency guarantees

v High scalability
v Multicore platform
v High concurrency PM devices

File
System

Scale well ?!

Two Popular PM File System Architectures

Kernel file systems Userspace file systems

Virtual File System

applications

PMFS NOVA …

PM

kernel
userspace

kernel
userspace

PM
monitor

Trusted
process

FSlib

FSlib

FSlib

…

v Software overhead
v VFS, syscall

v Scalability
v coarse-grained lock mgmt.

v Scalability
v centralized component E.g., TFS in Aerie

[Eurosys’14]; KernFS in Strata [SOSP’17]

v Vulnerable to stray writes

direct-access
highly

compatible easy to
implement

flexible
Safe

Our design goal:

Combine good properties of both kernel and userspace

file systems, while delivering high scalability!

Our Approach
A Kernel and userspace Collaborative architecture (i.e., Kuco)
v Based on a client-server processing model

v Kfs: processes metadata operations, and enforces access control
v Ulib: provides standard APIs to applications and interacts with Kfs

v Key idea: Shifting tasks from Kfs to Ulib as much as possible
v Metadata operations: collaborative indexing
v Write operations: two-level locking
v Read operations: versioned reads

v Achievements
v One order of magnitude higher throughput for high-contention workloads
v Fully saturates the PM bandwidth for data operations

v Introduction

v PM File System Scalability

v Kuco: Kernel-Userpace Collaboration

v Results

v Summary & Conclusion

Outline

Scalability I (kernel file systems)

0

0.05

0.1

0.15

0.2

1 4 8 12 16 20 24 28 32 36

T
hr

ou
gh

pu
t

(M
op

s/
s)

of threads

Create Unlink Rename

NOVA [FAST’16]:
a PM-aware file system
v Avoids using global locks

v Per-inode log
v Partitioned free space mgmt.

v Scalable designs do not scale
v Concurrent operations in shared

folders do not scale at all
vVFS is the culprit: locks the parent

directory when updating sub-files

Scalability II (userspace file systems)

TFS

FSlib FSlib FSlib…

Metadata ops

Lock ops

Aerie [Eurosys’14] Strata [SOSP’17]

KernFS

Libfs Libfs Libfs…

PM

Oplog Oplog Oplog

Digestion: data + metadata

Centralized components limit overall scalability!

v Introduction

v PM File System Scalability

v Kuco: Kernel-Userpace Collaboration

v Results

v Summary & Conclusion

Outline

Kuco: Kernel-Userspace Collaboration

Kfs

Ulib Ulib Ulib…

PM
Indexing CC

kernel
userspace

mmap

Direct read/writeMetadata updates

v PM space is mapped to userspace
v Ulib read/write file data directly
v Kfs updates metadata & enforce access control

v Client/server processing model
v Overall throughput is determined by how fast

the Kfs processes each request
v Tmax = 1 / L, where L is the latency for Kfs to

process a request

v Key idea: shifting tasks from Kfs to Ulib
v Improves scalability by reducing the value of L
v Metadata indexing (i.e., pathname resolution)
v Concurrency control

Collaborative Indexing
v Pathname resolution

v Recursive and random memory access
v Large directories or deep hierarchies

v Collaborative indexing
v PM space is mapped to userspace
v Ulib pre-locates metadata items in userspace before

sending a request to Kfs
v Kfs update metadata items directly with the given

addresses

v Examples: Creat()
v create a new inode, insert a dentry
v Ulib passes the address of the predecessor of the target

dentry in the parent dentry list

/

Bob Tom

…

File metadata:
inode (file attributes)

Directory metadata:
dentry list (name è inode)

Bob
predecessor

Correctness & Safety
v Concurrent updates

v Q1: Ulib may read inconsistent metadata when
Kfs is updating it

v Q2: Ulib may send obsolete metadata to Kfs
when another Ulib changed this metadata

1) Pointers should point to consistent items
v Ulib may read inconsistent items when Kfs is

updating concurrently
v Each dentry list is managed via a lock-free skip list

/

Bob Tom

a b c

• directory tree consists of
hierarchical dentry lists

• Only insert & delete operations
(including rename)Bob

Ulib

Kfs

Correctness & Safety
v Concurrent updates:

v Q1: Ulib may read inconsistent metadata when
Kfs is updating

v Q2: Ulib may send obsolete metadata to Kfs
when another Ulib changed this metadata

1) Pointers should point to consistent items

2) Pointers should be up-to-date
v Ulibs are scanning in a lock-free manner

v Epoch-Based Reclamation prevents reading deleted
items

v Predecessor may be no longer a predecessor
v Rechecking prevents reading obsolete items

Bob 1 2 5 6

4

3

predecessor

Out of order!

More details: checkout our paper
vTwo-level locking

v Between different processes: distributed lease
v Between different threads within the same process: Userspace range lock

vThree-phase writes
v Avoid stray writes

vVersioned reads
v Old and new copies of written pages are kept due to a CoW way
v Kuco enables the readers to read a consistent snapshot of file data w/o interacting

with Kfs by embedding extra version bits in the block mapping

v Read protection

v Crash consistency & data layout

v Introduction

v PM File System Scalability

v Kuco: Kernel-Userpace Collaboration

v Results

v Summary & Conclusion

Outline

Experimental Setup
Hardware Platform

CPU 2 Xeon Gold 6240m CPUs (36 physical cores)

DRAM 384 GB (32GB/DIMM)

PM 12 Optane DCPMMs (3 TB, 256 GB/DIMM),

Operating System Ubuntu 19.04, Linux 5.1

Compared Systems
Kernel File System Ext4-DAX, XFS-DAX, NOVA [FAST’16]

Userspace File System Aerie [Eurosys’14], Strata [SOSP’17], SplitFS [SOSP’19]

Benchmark
v FxMark: sharing level (low/medium/high), mode (data/metadata), operation (write, creat, …)

v Filebench (Fileserver, Webserver, Webproxy, Varmail)

Metadata scalability

0

0.5

1

1.5

2

1 4 8 12 16 20 24 28 32 T
hr

ou
gh

pu
t

(M
op

s/
s)

of Threads

EXT-DAX XFS-DAX PMFS
NOVA SplitFS KucoFS

0

0.5

1

1.5

1 4 8 12 16 20 24 28 32 36 T
hr

ou
gh

pu
t

(M
op

s/
s)

of Threads
EXT4-DAX XFS-DAX NOVA
PMFS SplitFS KucoFS

(a) Threads create files in private folders (b) Threads create files in a shared folder

13.8x

(1) Kfs only performs very light-weight work
(2) No lock is required (all updates are delegated to Kfs)

v Introduction

v PM File System Scalability

v Kuco: Kernel-Userpace Collaboration

v Results

v Summary & Conclusion

Outline

v PM file systems are desired to deliver high scalability
v Kernel file systems: VFS is hard to bypass
v Userspace file systems: requires a centralized coordinator

v Coarse-grained split between kernel and userspace: SplitFS
v Metadata operations are process by Ext4
v Data operations are conducted in userspace
v Still hard to scale

v PM-aware file system requires a fine-grained task split and collaboration
between kernel and userspace:
v Kuco: combine the advantages of both parts while delivering high scalability

Summary & Conclusion

Thanks for watching!

