Scalable Persistent Memory File System with
Kernel-Userspace Collaboration

Youmin Chen,Youyou Lu, Bohong Zhu,

Andrea C.Arpaci-Dusseau’, Remzi H. Arpaci-Dusseau’, Jiwu Shu

Tsinghua University TUniversity of Wisconsin - Madison

0

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

Persistent Memory

<+ Hardware Features
< Byte-addressability (attached to memory bus)

XP DIMM

XP DIMM | XP DIMM

DRAM DRAM

DRAM

< Data persistence (like hard disks)
< High performance (high bandwidth, low latency) Memory Mode

< Intel Optane DC Persistent Memory

()
e
@)
(qo)
O
0
>
()
-
s
w
«
—

< Commercially available in 2019 C
ore 2
< Read: 6.7 GB/s per DIMM

< Write: 2.3 GB/s per DIMM Core N
< App-Direct Mode vs. Memory Mode

[e

AppDirgct Mode

>
>
&
(a1
X

(intel) OPTANE DC O

PERSISTENT MEMORY

DIMM Capacity 128GB, 256GB, 512GB
2666 MT/sec
HER I E=ivap 6TB (3TB/cpu)

2 2
o E
a a

Persistent Memory File Systems

Except for file-based APIls, more o
expectations... SpQF’QZ s

. APACHE

<+ High performance @hadaa
< Low software overhead @ L e e e e e e e e e - -
< Efficient space mgmt. open read write mmap close

R

< Light-weight consistency guarantees

< High scalability

« Multicore platform
< High concurrency PM devices

————— Load/Store = = — — —
A 4

XP DIMM
XP DIMM

Scale well 2!

Two Popular PM File System Architectures

direct-access

|
_________ userspace highly : Trusted
kernel - compatible | easy to process

|

|

|

. |

:jpp: Virtual File System implement
Safe userspace
flexible prone kernel
< >
Kernel file systems Userspace file systems
<+ Software overhead < Scalability
* VFS, syscall « centralized component E.g.,TFS in Aerie

2+ Scalability [Eurosys’4]; KernFS in Strata [SOSP’17]

% coarse-grained lock mgmt. % Vulnerable to stray writes

v —

v

ANY)i
-/

Our design goal:

Combine good properties of both kernel and userspace

file systems, while delivering high scalability!

Our Approach

A Kernel and userspace Collaborative architecture (i.e., Kuco)

< Based on a client-server processing model
< Kfs: processes metadata operations, and enforces access control
< Ulib: provides standard APIs to applications and interacts with Kfs

< Key idea: Shifting tasks from Kfs to Ulib as much as possible
< Metadata operations: collaborative indexing
< Write operations: two=level locking

< Read operations: versioned reads

% Achievements

< One order of magnitude higher throughput for high-contention workloads
< Fully saturates the PM bandwidth for data operations

Outline

% PM File System Scalability
% Kuco: Kernel-Userpace Collaboration
+ Results

% Summary & Conclusion

Scalability | (kernel file systems)

o
N

NOVA [FAST’16]:
a PM-aware file system

e

—h—A

——

o
o

< Avoids using global locks

< Per-inode log

< Partitioned free space mgmt.

O
o
v

Throughput (Mops/s)
o

< Scalable designs do not scale

< Concurrent operations in shared

folders do not scale at all | 4 8 12 16 20 24 28 32 36

< VFS is the culprit: locks the parent # of threads

directory when updating sub-files +Create =Unlink -Rename

Scalability Il (userspace file systems)

Aerie [Eurosys’|4] Strata [SOSP’| 7]

Digestion: data + metadata

A Metadata ops

A Lock ops

Centralized components limit overall scalability!

Outline

% Kuco: Kernel-Userpace Collaboration
+ Results

% Summary & Conclusion

Kuco: Kernel-Userspace Collaboration

< PM space is mapped to userspace
< Ulib read/write file data directly

« Kfs updates metadata & enforce access control
Ve L]

< Client/server processing model
< Overall throughput is determined by how fast
the Kfs processes each request === k=== === == == == '=FoREEE
P q mmap kernel
< Tmax = | / L, where L is the latency for Kfs to) !
process a request

Metadata updates Direct read/write

Indexing CC \

< Key idea: shifting tasks from Kfs to Ulib Kfs
< Improves scalability by reducing the value of L
< Metadata indexing (i.e., pathname resolution)

< Concurrency control

Collaborative Indexing

< Pathname resolution
< Recursive and random memory access
< Large directories or deep hierarchies

< Collaborative indexing

< PM space is mapped to userspace

< Ulib pre-locates metadata items in userspace before

Directory metadata:
sending a request to Kfs I:l 4

dentry list (name =» inode)
< Kfs update metadata items directly with the given

addresses O File metadata:

inode (file attributes)

predecessor

Bob

< Examples: Creat()

< create a new inode, insert a dentry

< Ulib passes the address of the predecessor of the target
dentry in the parent dentry list

Correctness & Safety

< Concurrent updates

< QI:Ulib may read inconsistent metadata when
Kfs is updating it

< Q2:Ulib may send obsolete metadata to Kfs
when another Ulib changed this metadata

|) Pointers should point to consistent items

< Ulib may read inconsistent items when Kfs is
updating concurrently

< Each dentry list is managed via a lock-free skip list

Ulib

Bob I ». g
KT I
S

Bob 1 I L1

directory tree consists of
hierarchical dentry lists

Only insert & delete operations
(including rename)

Correctness & Safety

2) Pointers should be up-to-date

< Ulibs are scanning in a lock-free manner

< Epoch-Based Reclamation prevents reading deleted
items

< Predecessor may be no longer a predecessor

< Rechecking prevents reading obsolete items

predecessor

I

Out of order!

@

More details: checkout our paper

< Two-level locking
< Between different processes: distributed lease
< Between different threads within the same process: Userspace range lock

< Three-phase writes

< Avoid stray writes

< Versioned reads
< Old and new copies of written pages are kept due to a CoW way

< Kuco enables the readers to read a consistent snapshot of file data w/o interacting
with Kfs by embedding extra version bits in the block mapping

< Read protection

< Crash consistency & data layout

Outline

<+ Results

% Summary & Conclusion

Experimental Setup

Hardware Platform

CPU 2 Xeon Gold 6240m CPUs (36 physical cores)
DRAM 384 GB (32GB/DIMM)
PM |12 Optane DCPMMs (3 TB, 256 GB/DIMM),
Operating System Ubuntu 19.04, Linux 5.1

Compared Systems

Kernel File System Ext4-DAX, XFS-DAX, NOVA [FAST’ 1 6]

Userspace File System | Aerie [Eurosys’ 4], Strata [SOSP’17], SplitFS [SOSP’ 9]

Benchmark
- FxMark: sharing level (low/medium/high), mode (data/metadata), operation (write, creat, ...)

» Filebench (Fileserver,Vebserver,VWebproxy, Varmail)

Metadata scalability

— 2 —~ 1.5
&5 a
z : |
'EOO.S /\ _go . l
> >
-
= | 4 8 12 16 20 24 28 32 = | 4 8 12 16 20 24 28 32 36
of Threads # of Threads
—EXT-DAX —XFS-DAX PMFS —EXT4-DAX —XFS-DAX NOVA
NOVA —SplitFS -#-KucoFS PMFS —SplitFS -#-KucoFS
() Threads create files in private folders (b) Threads create files in a shared folder

ﬂa (1) Kfs only performs very light-weight work
(2) No lock is required (all updates are delegated to Kfs)

Outline

% Summary & Conclusion

Summary & Conclusion

< PM file systems are desired to deliver high scalability
< Kernel file systems:VFS is hard to bypass

< Userspace file systems: requires a centralized coordinator

< Coarse-grained split between kernel and userspace: SplitFS
< Metadata operations are process by Ext4
< Data operations are conducted in userspace
« Still hard to scale

< PM-aware file system requires a fine-grained task split and collaboration
between kernel and userspace:

< Kuco: combine the advantages of both parts while delivering high scalability

Thanks for watching!

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

