# SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage

Hao Chen<sup>1, 2</sup>, Chaoyi Ruan<sup>1</sup>, Cheng Li<sup>1</sup>, Xiaosong Ma<sup>2</sup>, Yinlong Xu<sup>1, 3</sup>

<sup>1</sup> University of Science and Technology of China <sup>2</sup> Qatar Computing Research Institute, HBKU <sup>3</sup>Anhui Province Key Laboratory of High Performance Computing





#### **Rise of Key-Value Stores**

□ Persistent key-value (KV) stores popular and important

- Storing semi-structured data for enterprise services
  - E.g., LevelDB by Google, RocksDB by Facebook
- Being backend storage engine for
  - > Ceph, MyRocks, TiDB, Cassandra
- LSM-tree based KV stores are popular



□ Opportunities for performance enhancement brought by high-end NVMe storage devices



□ Unfortunately, their potential not fully exploited by modern LSM-tree based KV stores

#### **Challenge 1: Fast Accesses to Fast Devices**



Linux I/O Stack



SPDK driver

- Lower latency stemming from
  - User-space driver, avoid syscall
  - Polling for completion rather than interruption
- □ However, benefits come at costs
  - Need to manage raw space with no FS support
  - Busy wait wastes CPU cycles

## Challenge 2: Thread Sync Overhead in Group Logging

Group logging: widely used to speed up write-ahead logging (WAL)

□ All existing group logging implementations sequential



#### RocksDB/LevelDB group logging process

## Challenge 2: Thread Sync Overhead in Group Logging

Group logging: widely used to speed up write-ahead logging (WAL) performance

□ All existing group logging implementations **sequential** 



## Challenge 2: Thread Sync Overhead in Group Logging

❑ Group logging: widely used to speed up write-ahead logging (WAL) performance
❑ All existing group logging implementations sequential



#### **Related Work and Our Approach**

#### Optimized KV stores based on LSM-tree

- PebblesDB [SOSP'17], SILK [ATC'19], ElasticBF [ATC'19], SplinterDB [ATC'20]
- Limitations: data structure changes, using conventional Linux I/O stack
- Develop KV stores on NVMe SSDs
  - \* KVSSD [SYSTOR'19], KVell [SOSP'19], FlatStore [ASPLOS'20]
  - Limitations: High hardware cost, loss of transaction support in some cases

#### **Our focus and major approach**

- Cost-effectiveness: coupling small, fast devices with larger, slower ones
- Full utilization of fast device: latency, bandwidth, and capacity
- Compatibility: enhancing widely used RocksDB, no new data structures

#### **SpanDB Overview**



#### **Async. KV Request Processing**



## **Parallel Logging via SPDK**



□ WAL writes to log area on raw device via SPDK

- Concurrent: for better NVMe device utilization
- ✤ Pipelined: for better CPU time utilization busy
- ✤ 1-2 dedicated loggers able to saturate Optane
- Additional metadata management for consistency without FS

#### **Dynamic LSM-Tree Level Placement**



#### **Dynamic LSM-Tree Level Placement**



## **Experimental Setup**

#### □ Hardware

- ✤ 2 20-core CPUs, 256GB memory
- ✤ 4 types of data center storage devices

| ID | Model                      | Price      | Seq. write bandwidth | Write latency |
|----|----------------------------|------------|----------------------|---------------|
| S  | Intel S4510 (SATA)         | 0.26 \$/GB | 510 MB/s             | 37 us         |
| N1 | Intel P4510 (NVMe)         | 0.25 \$/GB | 2900 MB/s            | 18 us         |
| N2 | Intel P4610 (NVMe)         | 0.40 \$/GB | 2080 MB/s            | 18 us         |
| 0  | Intel Optane P4800X (NVMe) | 3.25 \$/GB | 2000 MB/s            | 10 us         |

- □ Workloads: **YCSB** and **LinkBench**
- □ Baselines: RocksDB (v6.5.1), KVell [SOSP'19], and RocksDB-BlobFS
- Database size: primarily with **512GB**, up to **2TB**

#### YCSB Results, Comparison w. RocksDB



#### YCSB Results, Comparison w. RocksDB



15

#### YCSB Results, Comparison w. KVell

KVell (N1-N1) (B=1)



2TB database 

YCSB-A: 50% update and 50% read, YCSB-B: 5% update and 95% read, YCSB-E: 5% update and 95% scan 

KVell (B=1): batch size = 1 in KVell 

## YCSB Results, Comparison w. KVell

KVell (N1-N1) (B=1) KVell (N1-N1) (B=match)



#### Throughput (the higher, the better)

Latency (the lower, the better)

#### 2TB database

□ YCSB-A: 50% update and 50% read, YCSB-B: 5% update and 95% read, YCSB-E: 5% update and 95% scan

- $\Box$  KVell (B=1): batch size = 1 in KVell
- □ KVell (B=match): the smallest batch size that surpasses SpanDB's throughput

## YCSB Results, Comparison w. KVell



2TB database

- □ YCSB-A: 50% update and 50% read, YCSB-B: 5% update and 95% read, YCSB-E: 5% update and 95% scan
- $\Box$  KVell (B=1): batch size = 1 in KVell
- □ KVell (B=match): the smallest batch size that surpasses SpanDB's throughput

# SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage

**Open-source:** https://github.com/SpanDB/SpanDB

# Thanks

{cighao, rcy}@mail.ustc.edu.cn, {chengli7, ylxu}@ustc.edu.cn, xma@hbku.edu.qa