
Tsinghua University

SpanDB: A Fast, Cost-Effective LSM-tree
Based KV Store on Hybrid Storage
Hao Chen1, 2, Chaoyi Ruan1, Cheng Li1, Xiaosong Ma2, Yinlong Xu1, 3

1 University of Science and Technology of China
2 Qatar Computing Research Institute, HBKU

3Anhui Province Key Laboratory of High Performance Computing

Tsinghua University2

Rise of Key-Value Stores

q Persistent key-value (KV) stores popular and important

v Storing semi-structured data for enterprise services

Ø E.g., LevelDB by Google, RocksDB by Facebook

v Being backend storage engine for

Ø Ceph, MyRocks, TiDB, Cassandra

v LSM-tree based KV stores are popular

q Opportunities for performance enhancement brought by high-end NVMe storage devices

q Unfortunately, their potential not fully exploited by modern LSM-tree based KV stores

HDD
(~ms, 100MB/s)

High-end SSD
(~10us, 2000MB/s)

Tsinghua University3

User space

Kernel space

Application

VFS

NFS ext2 ext3 ext4

Page cache

Generic block

I/O scheduler

Block device driver

Block device (Optane 4800x)

70-80 us

10 us

Linux I/O Stack

q Lower latency stemming from
v User-space driver, avoid syscall
v Polling for completion rather than interruption

Application

SPDK driver

Block device (Optane 4800x)

SPDK driver

10 usUser space

Challenge 1: Fast Accesses to Fast Devices

q However, benefits come at costs
v Need to manage raw space with no FS support
v Busy wait wastes CPU cycles

Tsinghua University

Group 2

Group 1

4

In-memory
updates

In-memory
updates

In-memory
updates

Notify

wake up

transfer to leader

Barrier

Join Queue WaitThread-4

Challenge 2: Thread Sync Overhead in Group Logging

q Group logging: widely used to speed up write-ahead logging (WAL)

Batch
write

Wait

Wait

Join QueueThread-2
follower

Join QueueThread-3
follower

Join QueueThread-1
leader

RocksDB/LevelDB group logging process

q All existing group logging implementations sequential

Tsinghua University

Group 2

Group 1

5

In-memory
updates

In-memory
updates

In-memory
updates

Notify

wake up

transfer to leader

Barrier

Join Queue WaitThread-4

Challenge 2: Thread Sync Overhead in Group Logging

q Group logging: widely used to speed up write-ahead logging (WAL) performance

Wait

Wait

Join QueueThread-2
follower

Join QueueThread-3
follower

Join QueueThread-1
leader

Batch
write

Sequential logging by single leader: under-utilizes SSD bandwidth

q All existing group logging implementations sequential

Tsinghua University

Group 2

Group 1

6

In-memory
updates

In-memory
updates

In-memory
updates

Notify

wake up

transfer to leader

Join QueueThread-4

Challenge 2: Thread Sync Overhead in Group Logging

q Group logging: widely used to speed up write-ahead logging (WAL) performance

Join QueueThread-2
follower

Join QueueThread-3
follower

Join QueueThread-1
leader

Batch
write

Synchronization costly: >80% of WAL write latency on Optane SSD

Wait

BarrierWait

Wait

q All existing group logging implementations sequential

Tsinghua University7

Related Work and Our Approach

q Develop KV stores on NVMe SSDs
v KVSSD [SYSTOR’19]

q Our focus and major approach
v Cost-effectiveness: coupling small, fast devices with larger, slower ones
v Full utilization of fast device: latency, bandwidth, and capacity
v Compatibility: enhancing widely used RocksDB, no new data structures

q Optimized KV stores based on LSM-tree
v PebblesDB [SOSP’17], SILK [ATC’19], ElasticBF [ATC’19], SplinterDB [ATC’20]
v Limitations: data structure changes, using conventional Linux I/O stack

, KVell [SOSP’19], FlatStore [ASPLOS’20]

v Limitations: High hardware cost, loss of transaction support in some cases

Tsinghua University

Speed Disk (SD)

8

DRAM
(256 GB, $1800)

Immutable MemTables Mutable Memtable

Logging

KV APIs

SATA SSD RAID (960GB, $334)×5

Capacity Disk (CD)

Optane SSD, 375GB, $1214

WAL

area
(25GB)

Top LSM-tree levels

(2.5GB)
(250MB) L1

L2
L3

L0

CompactionRead

OS page cache

File system

Flush Read

Cache

SpanDB TopFS

SpanDB Overview

(250GB)

(2.5TB)

…

L4

L5

Bottom LSM-tree levels

…

Tsinghua University

…

Flush/
Compct.

QFlush

QCompact

9

…

QProLog QLog

Write
processing

Write
completion

QEpiLog

Group
logging

Set request completion status
A_check

A_put

A_get MT hit?

Read
Read

processing

QReadY

N

Clients
SpanDB

Workers Logger

Async. KV Request Processing

Tsinghua University10

Busy wait
1-2us 6-7us 1-2us

SPDK write

Pipelined WAL writes

Busy wait

Logger

Atomic log page allocation

q WAL writes to log area on raw device via SPDK
v Concurrent: for better NVMe device utilization
v Pipelined: for better CPU time utilization busy
v 1-2 dedicated loggers able to saturate Optane
v Additional metadata management for consistency without FS

RAW NVMe SSD (SD)

SPDK driver

Parallel Logging via SPDK

Batched WAL
request

Tsinghua University11

Workload less write-intensive

CD

L2

L3

L4

…
SD

L1
L0

Dynamic LSM-Tree Level Placement

(Top 2 levels on SD)

SpanDB level pointer

Traffic stress monitoring

0

1
2

3
4
5

Tsinghua University12

Workload less write-intensive

CD

L2

L3

L4

…
SD

L1
L0

Dynamic LSM-Tree Level Placement

0

1
2

3
4
5

(Top 2 levels on SD)

SpanDB level pointer

Traffic stress monitoring

(Top 3 levels on SD)

CD

L3

L4

…

SD

L1

L2

L0 q All new writes to L2 will go to SD

q Lazy placement update, no active data migration

q Data cached at SD when level move to CD

Tsinghua University13

Experimental Setup

q Hardware
v 2 20-core CPUs, 256GB memory
v 4 types of data center storage devices

ID Model Price Seq. write bandwidth Write latency

S Intel S4510 (SATA) 0.26 $/GB 510 MB/s 37 us

N1 Intel P4510 (NVMe) 0.25 $/GB 2900 MB/s 18 us

N2 Intel P4610 (NVMe) 0.40 $/GB 2080 MB/s 18 us

O Intel Optane P4800X (NVMe) 3.25 $/GB 2000 MB/s 10 us

q Workloads: YCSB and LinkBench
q Baselines: RocksDB (v6.5.1), KVell [SOSP’19], and RocksDB-BlobFS
q Database size: primarily with 512GB, up to 2TB

Tsinghua University14

YCSB Results, Comparison w. RocksDB

2x

K
O

P
S

La
te

nc
y

(u
s)

100% write

8x

Throughput (the higher, the better) Latency (the lower, the better)

CD: N1
SD: O

Tsinghua University15

YCSB Results, Comparison w. RocksDB

K
O

P
S

K
O

P
S

La
te

nc
y

(u
s)

La
te

nc
y

(u
s)

YCSB-A
50% update
50% read

4x

3x

Throughput (the higher, the better) Latency (the lower, the better)

100% write
CD: N1
SD: O

2x

8x

Tsinghua University16

YCSB Results, Comparison w. KVell

0

200

400

600

800

1000

100% Write YCSB-A YCSB-B YCSB-E

K
O

P
S

0

400

800

1200

1600

2000

100% Write YCSB-A YCSB-B YCSB-E

La
te

nc
y

(u
s)

q 2TB database
q YCSB-A: 50% update and 50% read, YCSB-B: 5% update and 95% read, YCSB-E: 5% update and 95% scan
q KVell (B=1): batch size = 1 in KVell

Throughput (the higher, the better) Latency (the lower, the better)

5

Tsinghua University17

YCSB Results, Comparison w. KVell

0

200

400

600

800

1000

100% Write YCSB-A YCSB-B YCSB-E

K
O

P
S

0

400

800

1200

1600

2000

100% Write YCSB-A YCSB-B YCSB-E

La
te

nc
y

(u
s)

4823

q 2TB database
q YCSB-A: 50% update and 50% read, YCSB-B: 5% update and 95% read, YCSB-E: 5% update and 95% scan
q KVell (B=1): batch size = 1 in KVell
q KVell (B=match): the smallest batch size that surpasses SpanDB’s throughput

Throughput (the higher, the better) Latency (the lower, the better)

405

Tsinghua University18

YCSB Results, Comparison w. KVell

0

200

400

600

800

1000

100% Write YCSB-A YCSB-B YCSB-E

K
O

P
S

0

400

800

1200

1600

2000

100% Write YCSB-A YCSB-B YCSB-E

La
te

nc
y

(u
s)

40

4823us

5 2556

q 2TB database
q YCSB-A: 50% update and 50% read, YCSB-B: 5% update and 95% read, YCSB-E: 5% update and 95% scan
q KVell (B=1): batch size = 1 in KVell
q KVell (B=match): the smallest batch size that surpasses SpanDB’s throughput

Throughput (the higher, the better) Latency (the lower, the better)
15% of SpanDB (S-O) throughput

Tsinghua University

SpanDB: A Fast, Cost-Effective LSM-tree
Based KV Store on Hybrid Storage

Thanks

Open-source: https://github.com/SpanDB/SpanDB

{cighao, rcy}@mail.ustc.edu.cn, {chengli7, ylxu}@ustc.edu.cn, xma@hbku.edu.qa

