19 USENIX Conference on File and Storage Technologies (FAST '21)

FlashNeuron: SSD-Enabled Large-Batch
Training of Very Deep Neural Networks

Jonghyun Bae! Jongsung Leel? Yunho Jin! Sam Son! Shine Kim?1?
Hakbeom Jang? Tae Jun Ham! Jae W. Leel

SAMSUNG

1 Seoul National University 2 Samsung Electronics

Rise of DNNs

 DNNs are the key enabler of today’s Al application

R | 3

Object detection and classification [Speech-to-text [

[1] Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection,” in CVPR 2016
[2] Image from https://nordicapis.com/5-best-speech-to-text-apis/

e]

USENIX FAST '21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks : ARC Lab, Seoul National University 2

Rise of DNNs

 DNNs are the key enabler of today’s Al application

« Twotypes of DNNworkloads: Training >> Inference

— 3x the computation: forward propagation, backward propagation, and weight update

Person | Bicycle %
1 % Omm ~f-\ uStrawberryn 3 <?> “Bicyc‘e”

| J_yfmw OFRIRE Eror

Strawberry labeled data!

Inference % 5% é%é\j “Bicycle”
222222

* Image from https:/Mww.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference .html

Training

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University 3

Rise of DNNs

 DNNs are the key enabler of today’s Al application

« Twotypes of DNNworkloads: Training >> Inference

— 3x the computation: forward propagation, backward propagation, and weight update

Person | Bicycle C%
I % : OM/-\ Vi = “Strawberry” *<?> “Bicycle”

Training

Strawberry labeled data!

Inference : : » » “Bicycle”

* Image from https:/Mww.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference .html

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 4

Rise of DNNs

 DNNs are the key enabler of today’s Al application

« Twotypes of DNNworkloads: Training >> Inference

— 3X the computation: forward propagation, backward propagation, and weight update

Person | Bicycle C%
1 % , N - —_— “Strawberry”*<'?>- “Bicycle”

M) J_u_'_l" Error
‘a Lots of ~N

Strawberry labeled data!

Training

Inference

% é%ig ;; ;2 ;_/ — “Bicycle”

* Image from https:/Mww.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference .html

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 5

Data Reuse in DNN Training

« Datareuse pattern from forward propagation to backward propagation
— Requiring input activation (X), and outputerror (dY) to calculate input gradient map (dX), weight

gradient (dW), and finally weight (W)

[Activation (X)] [Activation (Y)]

[Weight (W)]

Simplified data reuse pattern in a layer

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University 6

Data Reuse in DNN Training

« Datareuse pattern from forward propagation to backward propagation
— Requiring input activation (X), and outputerror (dY) to calculate input gradient map (dX), weight

gradient (dW), and finally weight (W)

[Activation (X)]

[Weight (W)] Weight

I t update

[Weight grad. (dW)]ﬁ
[Error (dX)]h[Error (dY)]

Backward pass

Simplified data reuse pattern in a layer

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 7

Data Reuse in DNN Training

« Datareuse pattern from forward propagation to backward propagation
— Requiring input activation (X), and outputerror (dY) to calculate input gradient map (dX), weight

gradient (dW), and finally weight (W)

[Activation (X)]

[Weight (W)] Weight

t update

[Weight grad. (dW)]ﬁ

[Error (dY)]

Simplified data reuse pattern in a layer

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University 8

Memory Capacity Wall in DNN Training

- DRAMfootprintincreases with (1) deeper neural nets (for accuracy) and (2) larger

patch size (for training throughput)

O Input + Intermediate result O Weight B Temporary buf.

596

2 =

%64 é’g

z B 2

232 |no

E ————— - D g] e = S N e T L L - —
Ix 2x 8x | Ix 2x 8x | Ix 2x 8x | Ix 2x 8x
ResNet-1922 | DenseNet-1001 | BERT-XLarge HBMP

GPU memory usage for DNN training

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 9

Overcoming GPU Memory Capacity Wall

 Previous approach: Buffering-on-memory

- Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

DRAM BW 4—» CPU task
contention 4—> Buffering-on-memory
Host DRAM CPU

PCle Switch }

Norm. throughput

i
o N MO © B

SOV

50% 70% 90%

50% 70% 90%
BERT-XLarge

50% 70% 90%
HBMP

50% 70% 90%
DenseNet-1001

ResNet-1922

Normalized throughput of buffering-on-memory with
bandwidth-intensive tasks on CPU

@ ARC Lab, Seoul National University | 10

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks

Overcoming GPU Memory Capacity Wall

 Previous approach: Buffering-on-memory

- Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

 New solution: Buffering-on-SSD

Host DRAM CPU 4> CPU task
4—>» Buffering-on-memory

REERERE]

4—> Buffering-on-SSD

NVMe SSD

(B

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 11

Overcoming GPU Memory Capacity Wall

 Previous approach: Buffering-on-memory

- Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

 New solution: Buffering-on-SSD

— With peer-to-peer communication, no host DRAM bandwidth or CPU cycles consumed

Host DRAM CPU 4> CPU task
4—>» Buffering-on-memory

4—> Buffering-on-SSD with peer-to-peer
communication

NVMe SSD

ﬂ@«—zm_: . ﬁ

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @} ARC Lab, Seoul National University | 12

Our Proposal: FlashNeuron

« Keyidea: DNNtraining using a high-performance SSD as a backing store
— Offloading scheduler: Identify a set of tensors to offload and generates an offloading schedule
- Memory manager: Manage offloading/prefetching and tensor allocation/deallocation

— Lightweight user-level I/O stack: Customized stack for p2p communication

« Keyresults
— Batch size: 12.4x to 14.0x over the maximum allowable batch size on 16GB HBM
— Training throughput improvement: Up to 37.8% (30.3% on average) over the baseline

— Cost efficiency: 35.3x higher cost efficiency assuming the same capacity of DRAM and SSD

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 13

System Overview

Training model structure

l

4 DNN Training Framework)
[Operation Core] ¢

Offloading
l Scheduler

Memory Manager

Peer-to-peer
Direct Storage Access

User-space NVMe Driver

! 1

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 14

System Overview

Training model structure

l

4 DNN Training Framework N\ Profiling result
[Operation Core] v

Offloading
Scheduler

\ chheduIing result

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 15

System Overview

Training model structure

l

4 DNN Training Framework)
[Operation Core]

Tensor Memory
offload/prefetch (de-)allocation
Memory Manager

Offload/prefetch
using tensorindex

Result of
offload/prefetch

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 16

System Overview

Training model structure

l

4 DNN Training Framework)
[Operation Core]

_ /

Offload/prefetch Result of
using tensorindex offload/prefetch

é)
Peer-to-peer

Direct Storage Access

User-space NVMe Driver

! 1

/Ocmd. Completion

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 17

Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size

* Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly:

Tensor Size;:

Spillover: 16MB
GPU memory: 8MB

: Uncompressible

- Low

-: High

' 6MB

2MB

4MB

4MB

AMB 2MB 2MB |=24MB

A

B

-

D

L

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks

@ ARC Lab, Seoul National University | 18

Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size

* Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly:
Tensor Size:

Spillover: 10MB
GPU memory: 8MB

eMB

: Uncompressible : Low -:High
'2MB 4MB 4MB 4MB 2MB 2MB |=18MB
. HEH > HEHEH - H
|)
Offloading
tensor A

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks

@ ARC Lab, Seoul National University | 19

Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

Tensor Size: eMB 2MB [4MB 4MB AMB 2MB 2MB = 16MB
Spillover: 8MB ﬂ D —-l G ~|
GPU memory: 8MB | >I

Offloading Offloading
tensor A tensor B

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 20

Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

TensorSize: 6MB 2MB 4MB | 4MB 4MB 2MB 2MB |=12MB
Spillover: 4MB ﬂ D —-l G ~|
GPU memory: 8MB | >I

Offloading Offloading Offloading
tensor A tensor B tensor C

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 21

Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

TensorSize: 6MB 2MB 4MB 4MB | 4MB 2MB 2MB |=8MB
G 4
|

Offloading Offloading Offloading Offloading
tensor A tensor B tensor C tensor D

Spillover: OMB
GPU memory: 8MB

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University ‘ 22

Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

Tensor Size: :
l
Spillover: OMB ~| :
GPU memory: 8MB >|
[

Offloading Offloading Offloading Offloading

tensor A tensor B tensor C tensor D

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University ‘ 23

Offloading Scheduler: Phase 2

 Finding an optimal scheduler for a given target batch size

 Phasel
— lteratively select a certain number of tensors from the beginning
« Phase?

— Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly: : Uncompressible : Low -: High
Tensor Size:
Spillover: OMB ~|
GPU memory: 8MB
Offloading Offloading Offloading Offloading
tensor A tensor B tensor C tensor D

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University ‘ 24

Offloading Scheduler: Phase 2

 Finding an optimal scheduler for a given target batch size

 Phasel
— lteratively select a certain number of tensors from the beginning
« Phase?

— Replace the tensors as offloading candidates with more compression-friendly tensors

-: High

Tensor Size: eMB 2MB 4MB 4AMB 2MB

Spillover: OMB ﬂ G ~|

GPU memory: 8MB | >| | |

Offloading Offloading Offloading Offloading
tensor A tensor B tensor C tensor E

Compression-friendly: : Uncompressible : Low

D

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University ‘ 25

Offloading Scheduler: Phase 2

 Finding an optimal scheduler for a given target batch size

 Phasel
— lteratively select a certain number of tensors from the beginning
« Phase?

— Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly: : Uncompressible : Low -: High

Tensor Size: 6MB 2MB 4MB 4MB = 4MB 2MB:

|
Spillover: OMB B —. D G 1I-|
GPU memory: 8MB | |
Offloading Offloading Offloading Offloading
tensor A tensor C tensorE tensorF

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University ‘ 26

Peer-to-peer Direct Storage Access (P2P-DSA)

 Lightweight /O stack to enable direct tensor offloading/prefetching

« Example walk-through

€ Index “1” transfer request

v

C

9 Set contiguous LBAs

~
N

LBA Allocator }
Metadata Table
Index | LBA | Done
P2P-DSA Queue 0 0 True
4 1 2048
\‘. .7 /
"~ GPU Base Address
PCle Bus L - - A ' Register (BAR)
s\‘ ‘v\‘v J
GPU
Index O
NVMe SSDio 1 ... 2048 - 8192 Max. LBA

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks

@ ARC Lab, Seoul National University | 27

Peer-to-peer Direct Storage Access (P2P-DSA)

 Lightweight /O stack to enable direct tensor offloading/prefetching

« Example walk-through

~
N

[LBA Allocator

Metadata Table

O Create and Index | LBA | Done
P2P-DSA Queue push cmd. 0] 0] True
L/ 1]2048
- \ 2/
\‘. ’7 /
ST TT STt GPU Base Address
PCle|Bus K --—mmmmm oo | Register (BAR)
S, N
O issue cmd. GPU
v
Index O

NVMe SSDio 1 ... 2048 - 8192 - Max. LBA

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 28

Peer-to-peer Direct Storage Access (P2P-DSA)

 Lightweight /O stack to enable direct tensor offloading/prefetching

« Example walk-through

~
N

[LBA Allocator]

Metadata Table

Index | LBA | Done
P2P-DSA Queue 0 0 True
.‘ b‘ 1 2048 | True
‘. .1 \& 1/
\ @ Update /

oo n RN GPU Base Address
e Bus L — - \Register (BAR)

N N

K 'S
v

@ Transfer GPU

Index 0 —» Index 1
NVMe SSDio 1 ... 2048 - 8192 - Max. LBA

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 29

Methodology

« System configurations « DNN models and datasets
CPU Intel Xeon Gold 6244 CPU 8 cores Network Dataset # of layers
@ 3.60GHz ResNet-1922 | ImageNet | 1922
GPU NVIDIA Tesla V100 16GB PCle DenseNet-1001 | ImageNet | 1001
Memory | Samsung DDR4-2666 64GB (32GB x 2) BERT-XLarge | SQUAD 1.1 | 48 transformer blocks
Storage | Samsung PM1725b 8TB PCle HBMP SciTail 24 hidden layers

Gen3 8-lane x 2
(Seq. write: 3.3GB/s, seq. read: 6.3GB/s)

oS Ubuntu server 18.04.3 LTS
Python | Version 3.7.3

PyTorch | Version 1.2

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 30

Evaluation: Overall Results

« 12.4xto 14x batch sizeincrement compared to the baselineusing GPU memory only

« Upto 37.8% (30.3% on average) training throughput improvement

-O- Baseline P2P —0O- P2P+CSR -@-P2P+FP16 -@- Buffering-on-SSD (FlashNeuron) -@- Buffering-on-memory

USENIX FAST °21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks

Batch size

ResNet-1922

Batch size

DenseNet-1001

Batch size

BERT-XLarge

8 5 6 20
o o D o
4

%6 D 24 £ 15
s 4 0 O S 10
2 2 2 S 2 g
E 2 £1 q% ;?5

0 0 “0 0

8 10 2 4 6 8 1012 1 2 3 4 5 12 28 44 60

@ ARC Lab, Seoul National University | 31

Batch size

HBMP

Evaluation: Co-locating Bandwidth-Intensive Tasks on CPU

 Throughput of DNN training on GPU
— Buffering-on-memory: 40.2% throughput degradation when CPU utilizes 90% of the memory BW
— FlashNeuron: 20.2% throughput gain when CPU utilizes 90% of the memory BW

-@®- Buffering-on-SSD (FlashNeuron) -@- Buffering-on-memory

= 15
>
(@R
e
S 1 <
O
E ‘Y‘? :kgv'
c 05
S
Z

0

50% 70% 90% | 50% 70% 90% | 50% 70% 90% | 50% 70% 90%
ResNet-1922 DenseNet-1001 BERT-XLarge HBMP

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 32

Conclusion

FlashNeuron enables large-batch training of

. very deep and wide neural networks

« ldentifyabandwidth contention problem in recent buffering-on-memory proposal

* Introducea novel offloading scheduler to fully utilize the scarce SSD write bandwidth

« Implementalightweightuser-space |/O stack customized for DNN training

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 33

19 USENIX Conference on File and Storage Technologies (FAST '21)

Thank You!

Source code of FlashNeuron i1s available at

https://github.com/SNU-ARC/flashneuron.git

