FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks

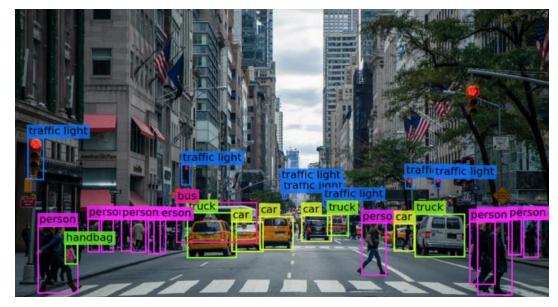
Jonghyun Bae¹ Jongsung Lee^{1,2} Yunho Jin¹ Sam Son¹ Shine Kim^{1,2} Hakbeom Jang² Tae Jun Ham¹ Jae W. Lee¹

SAMSUNG

¹ Seoul National University

² Samsung Electronics

DNNs are the key enabler of today's Al application

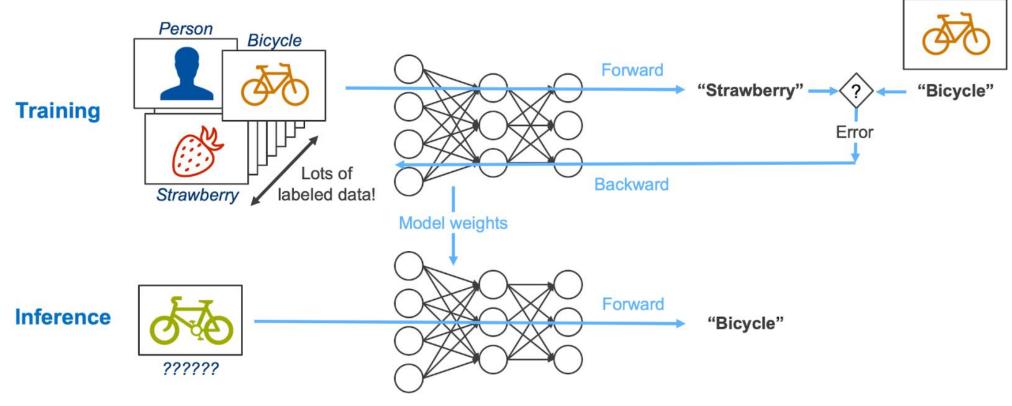


Object detection and classification [1]

Speech-to-text [2]

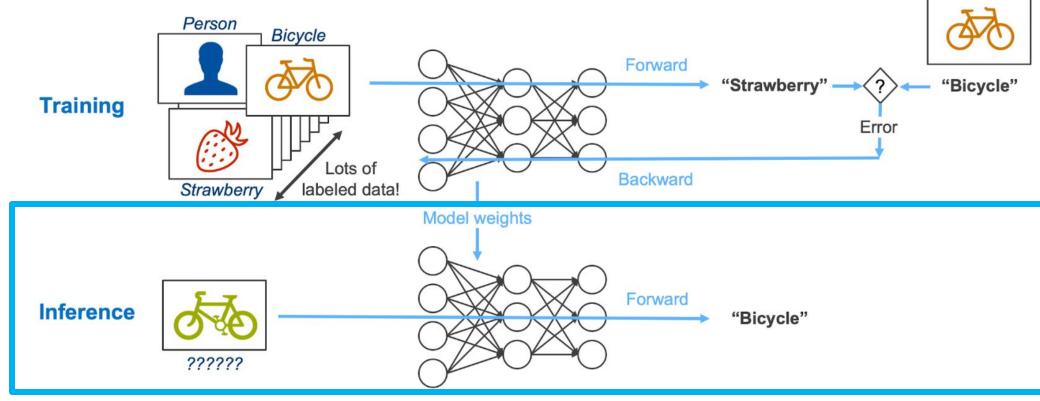
- [1] Joseph Redmon et al., "You Only Look Once: Unified, Real-Time Object Detection," in CVPR 2016
- [2] Image from https://nordicapis.com/5-best-speech-to-text-apis/

- DNNs are the key enabler of today's Al application
- Two types of DNN workloads: Training >> Inference
 - 3x the computation: forward propagation, backward propagation, and weight update



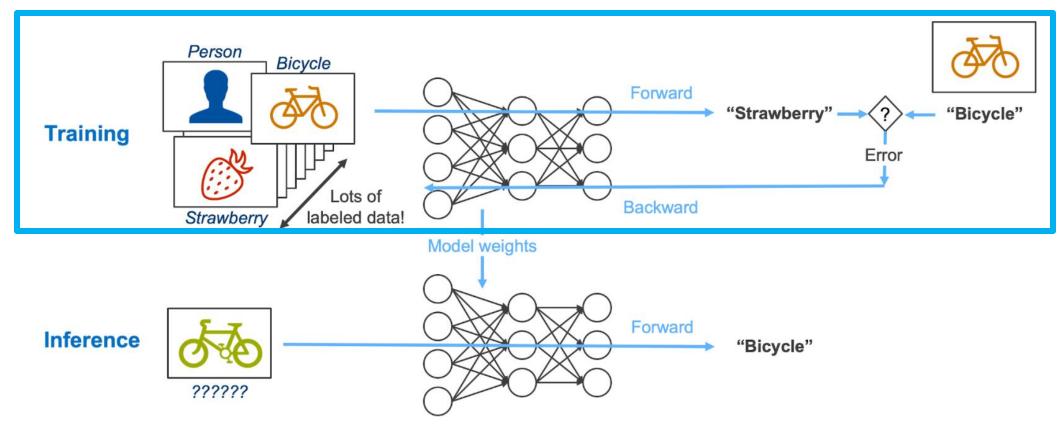
^{*} Image from https://www.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference.html

- DNNs are the key enabler of today's Al application
- Two types of DNN workloads: Training >> Inference
 - 3x the computation: forward propagation, backward propagation, and weight update



^{*} Image from https://www.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference.html

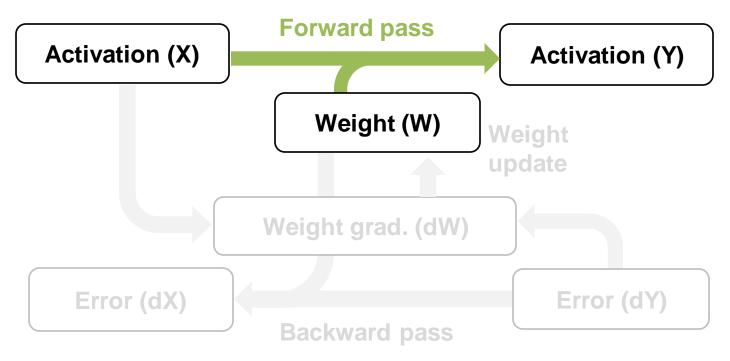
- DNNs are the key enabler of today's Al application
- Two types of DNN workloads: Training >> Inference
 - **3x** the computation: forward propagation, backward propagation, and weight update



^{*} Image from https://www.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference.html

Data Reuse in DNN Training

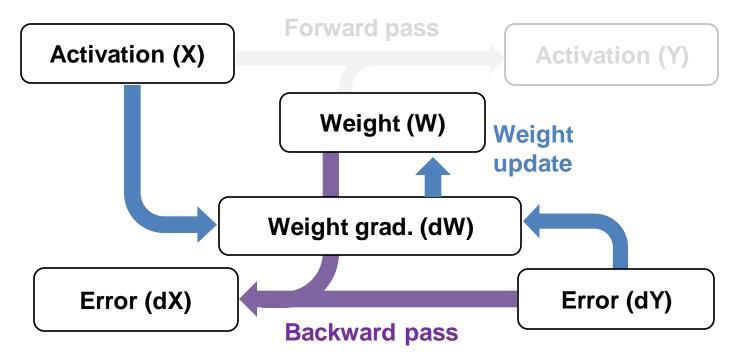
- Data reuse pattern from forward propagation to backward propagation
 - Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight gradient (dW), and finally weight (W)



Simplified data reuse pattern in a layer

Data Reuse in DNN Training

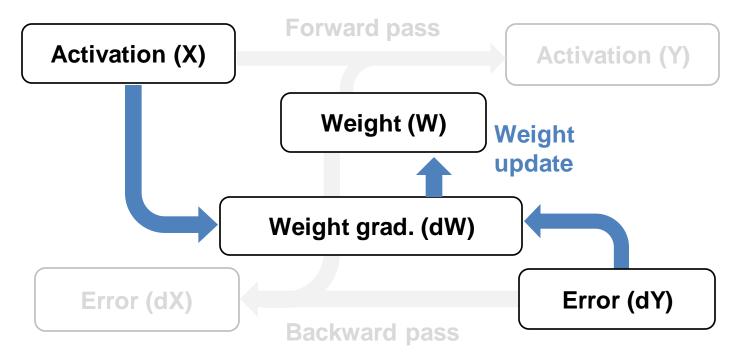
- Data reuse pattern from forward propagation to backward propagation
 - Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight gradient (**dW**), and finally weight (**W**)



Simplified data reuse pattern in a layer

Data Reuse in DNN Training

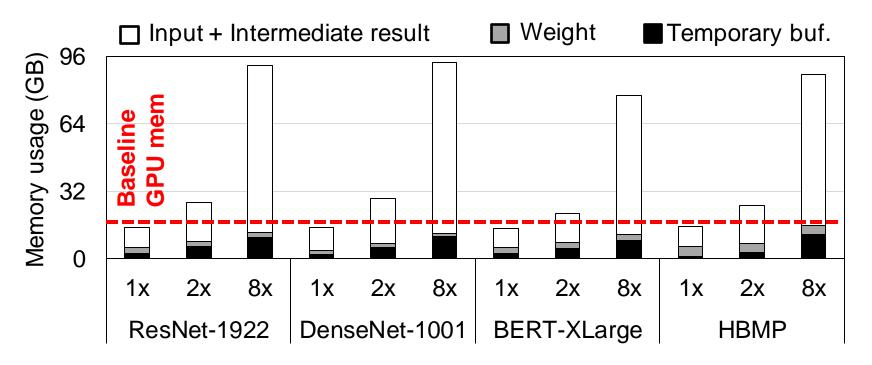
- Data reuse pattern from forward propagation to backward propagation
 - Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight gradient (**dW**), and finally weight (**W**)



Simplified data reuse pattern in a layer

Memory Capacity Wall in DNN Training

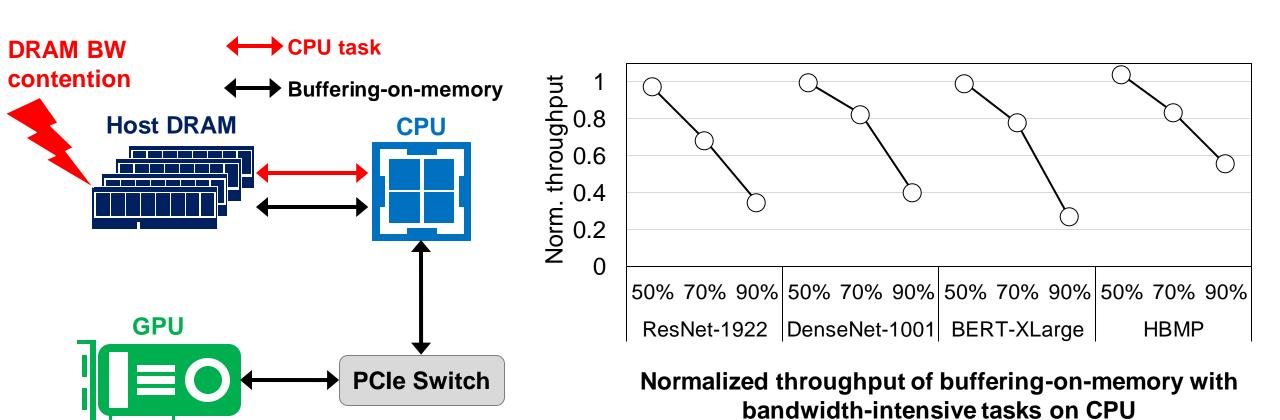
DRAM footprint increases with (1) deeper neural nets (for accuracy) and (2) larger **batch size** (for training throughput)



GPU memory usage for DNN training

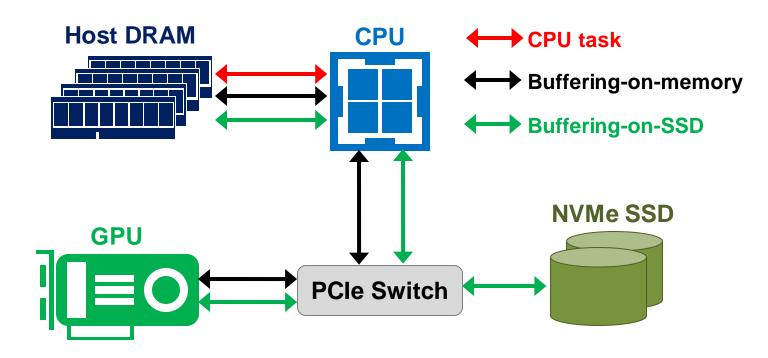
Overcoming GPU Memory Capacity Wall

- Previous approach: Buffering-on-memory
 - Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)



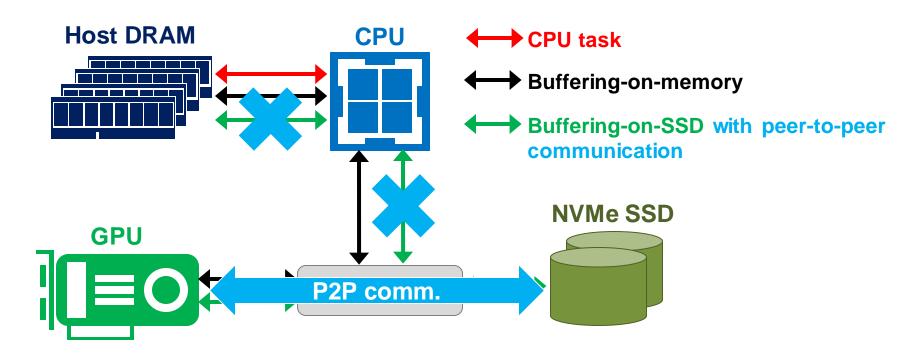
Overcoming GPU Memory Capacity Wall

- **Previous approach: Buffering-on-memory**
 - Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)
- **New solution: Buffering-on-SSD**



Overcoming GPU Memory Capacity Wall

- **Previous approach: Buffering-on-memory**
 - Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)
- **New solution: Buffering-on-SSD**
 - With peer-to-peer communication, no host DRAM bandwidth or CPU cycles consumed

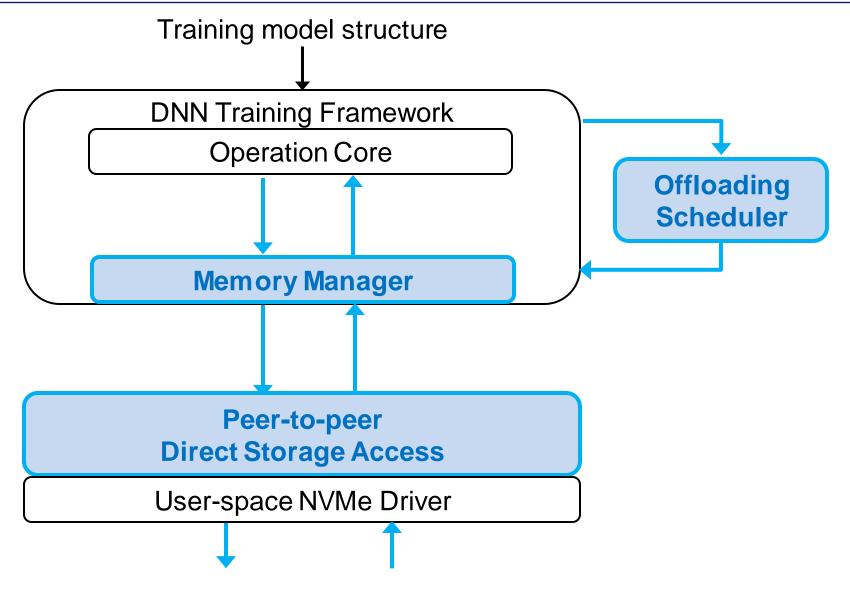


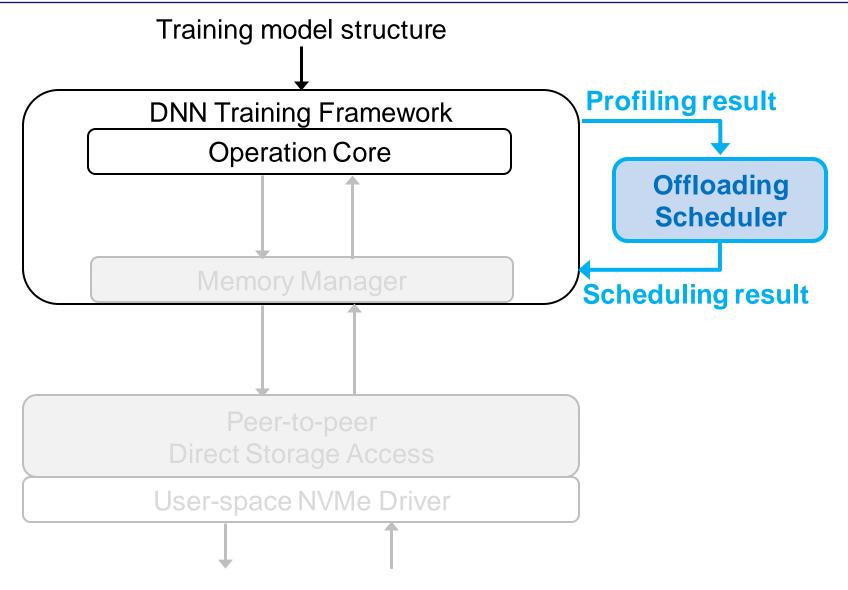
Our Proposal: FlashNeuron

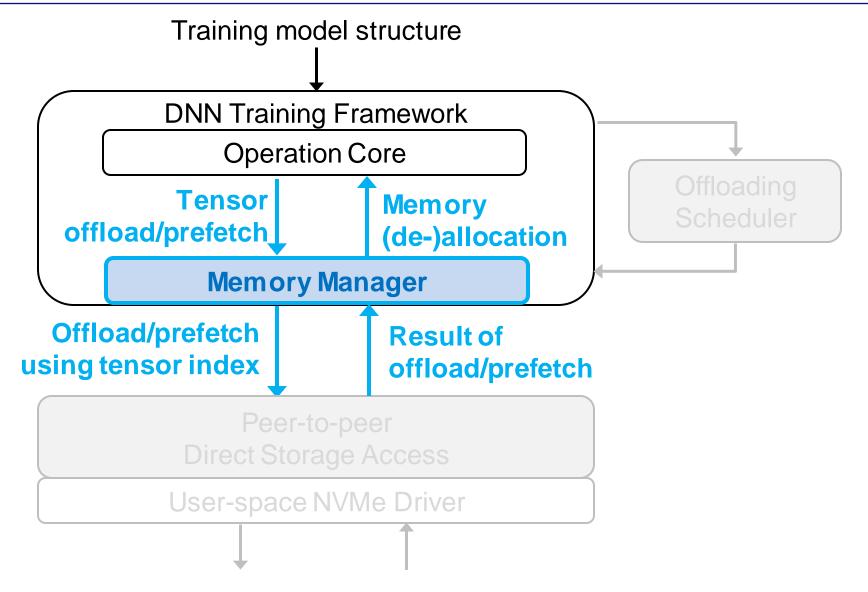
- Key idea: DNN training using a high-performance SSD as a backing store
 - **Offloading scheduler**: Identify a set of tensors to offload and generates an offloading schedule
 - **Memory manager**: Manage offloading/prefetching and tensor allocation/deallocation
 - Lightweight user-level I/O stack: Customized stack for p2p communication

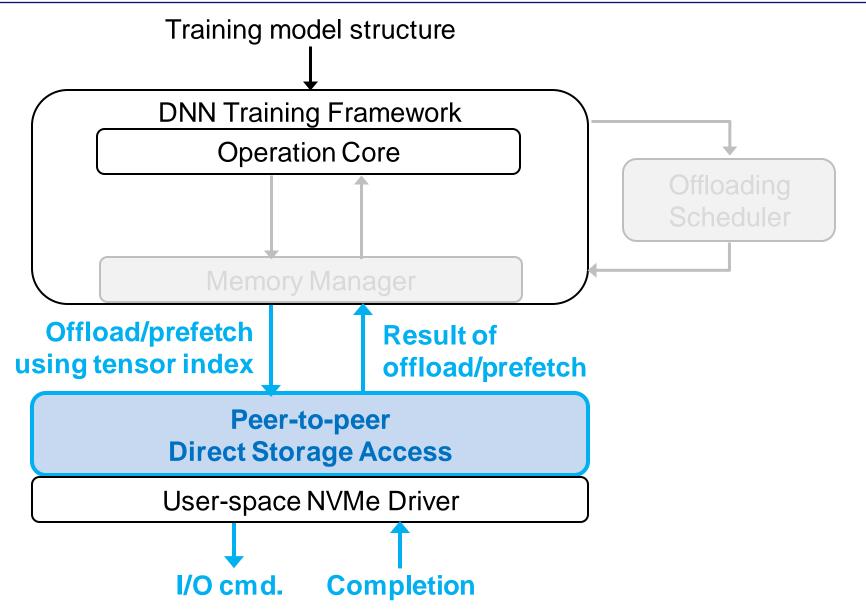
Key results

- Batch size: 12.4x to 14.0x over the maximum allowable batch size on 16GB HBM
- Training throughput improvement: Up to 37.8% (30.3% on average) over the baseline
- Cost efficiency: 35.3x higher cost efficiency assuming the same capacity of DRAM and SSD

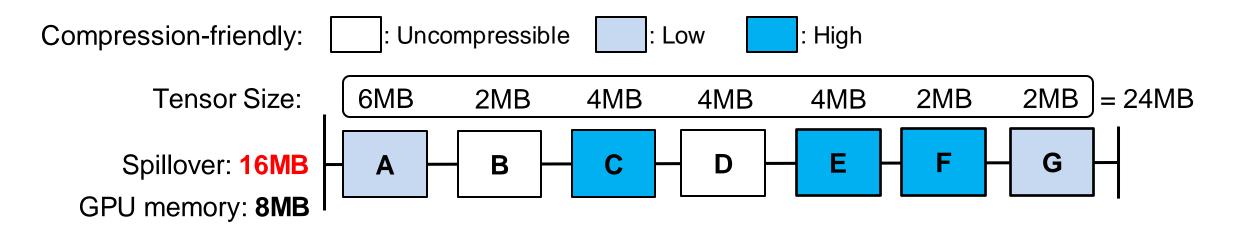




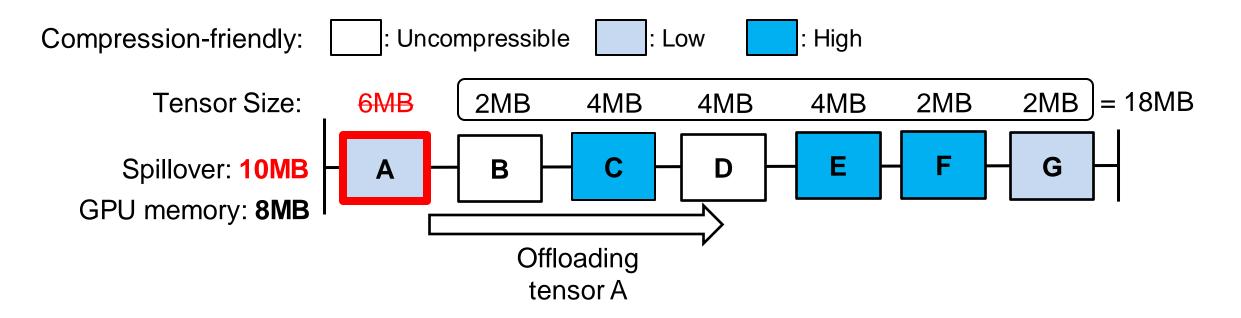




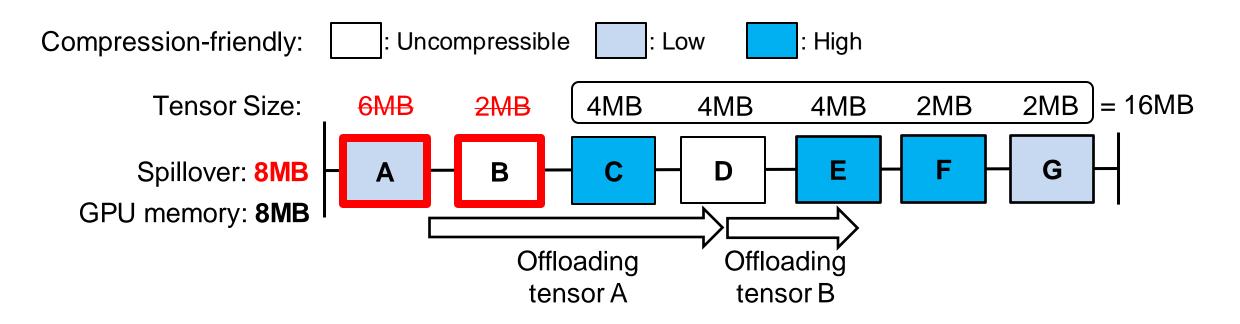
- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning



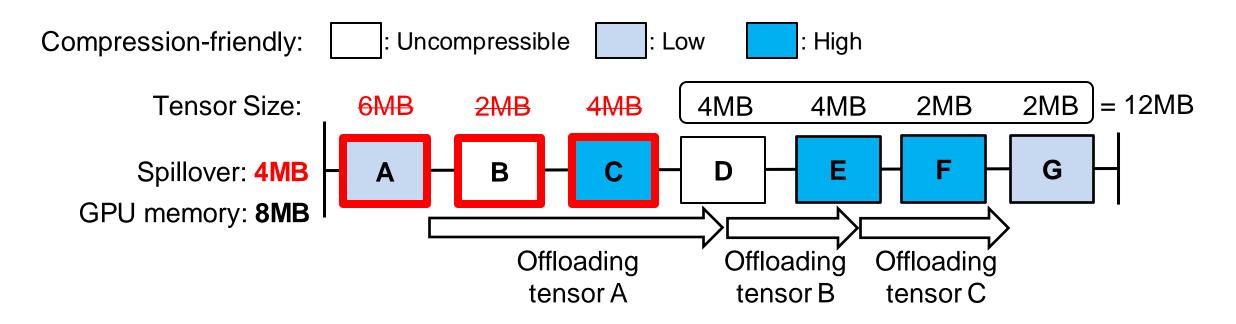
- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning



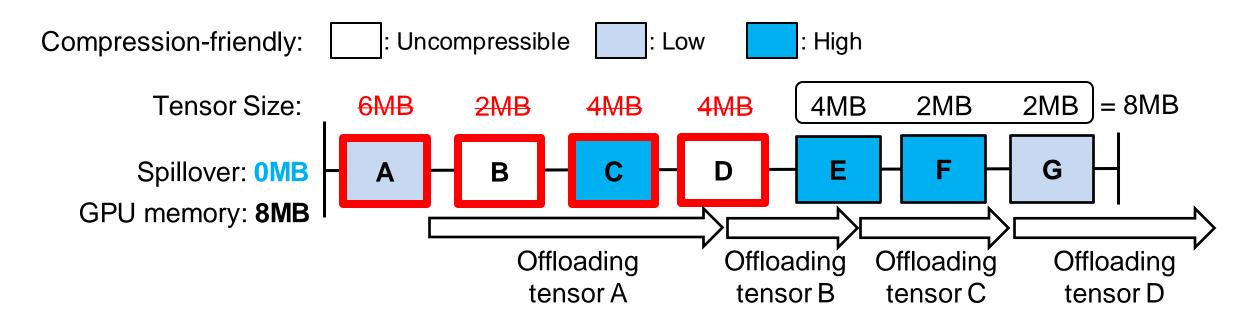
- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning



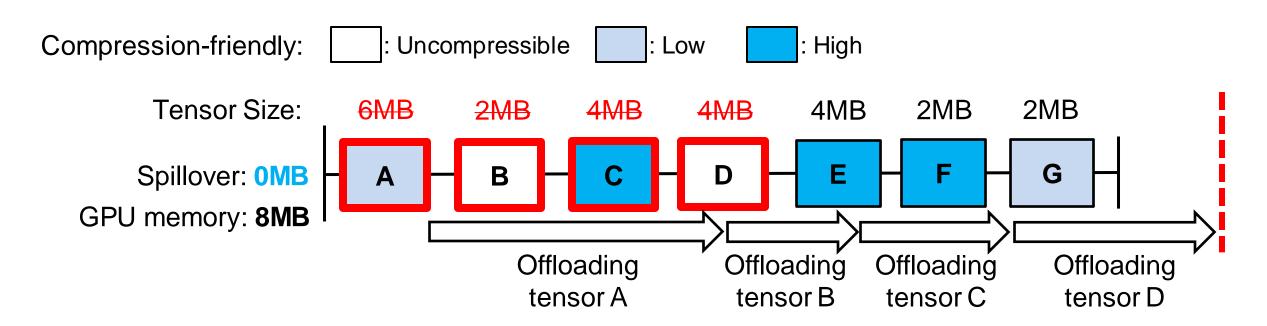
- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning



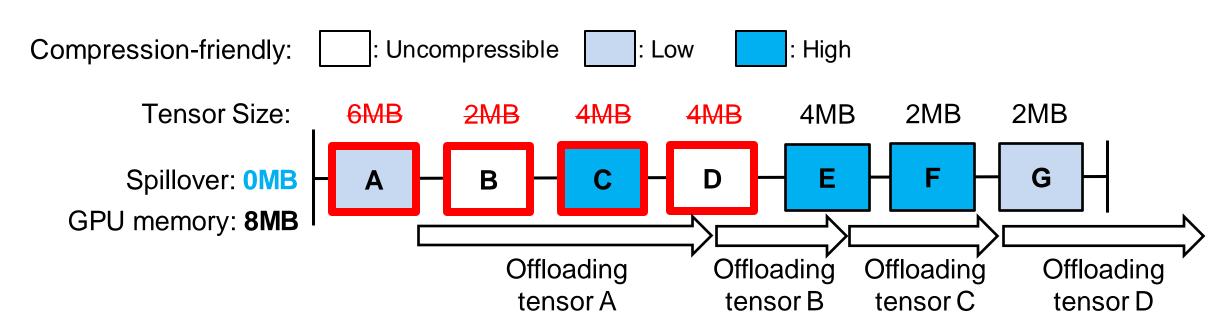
- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning



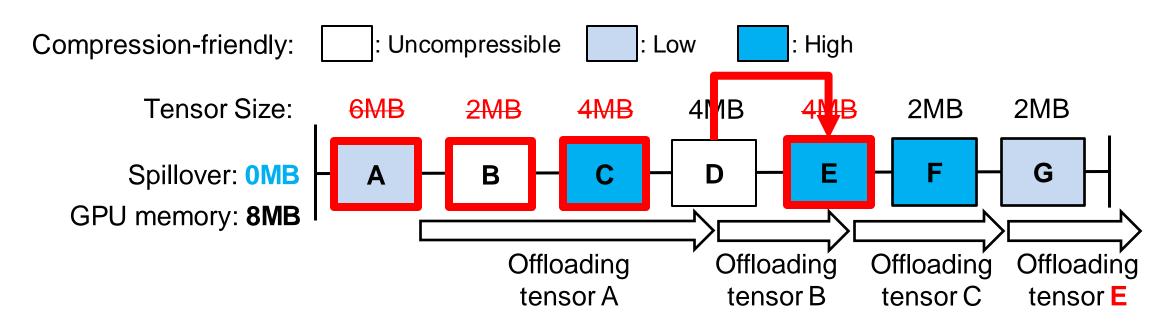
- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning



- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning
- Phase 2
 - Replace the tensors as offloading candidates with more compression-friendly tensors



- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning
- Phase 2
 - Replace the tensors as offloading candidates with more compression-friendly tensors

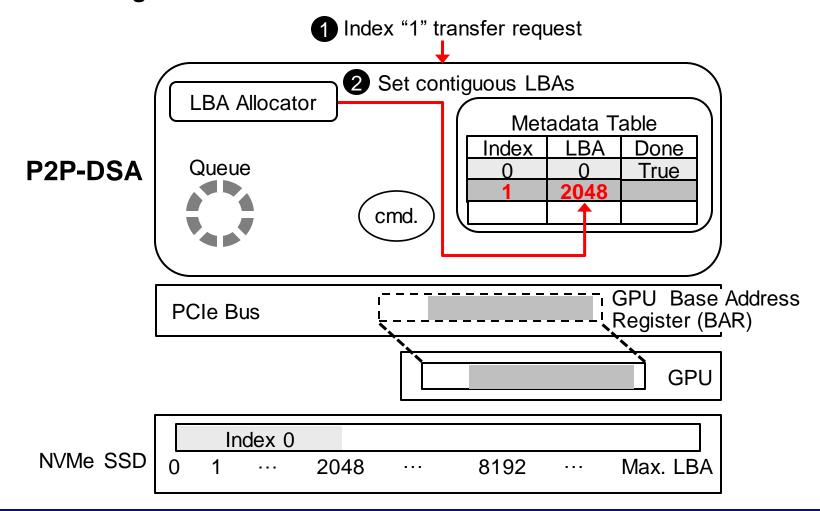


- Finding an optimal scheduler for a given target batch size
- Phase 1
 - Iteratively select a certain number of tensors from the beginning
- Phase 2
 - Replace the tensors as offloading candidates with more compression-friendly tensors



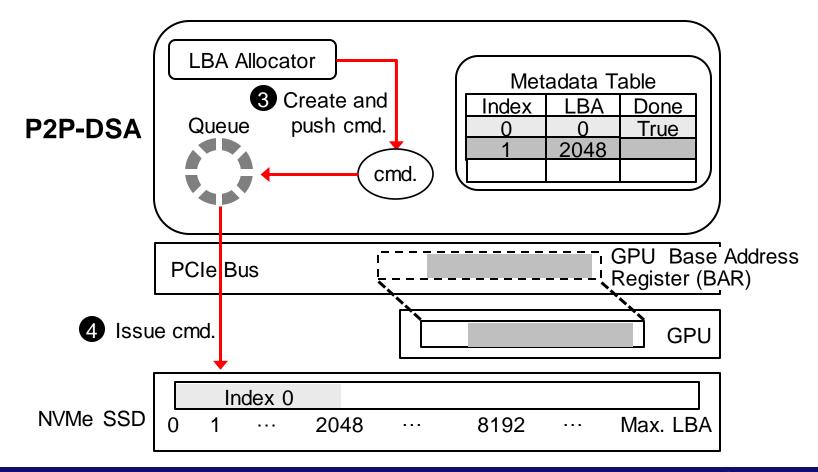
Peer-to-peer Direct Storage Access (P2P-DSA)

- Lightweight I/O stack to enable direct tensor offloading/prefetching
- **Example walk-through**



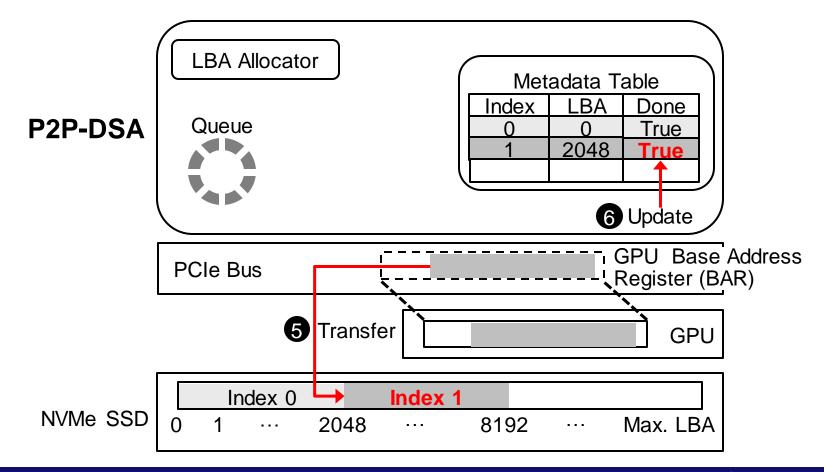
Peer-to-peer Direct Storage Access (P2P-DSA)

- Lightweight I/O stack to enable direct tensor offloading/prefetching
- **Example walk-through**



Peer-to-peer Direct Storage Access (P2P-DSA)

- Lightweight I/O stack to enable direct tensor offloading/prefetching
- **Example walk-through**



Methodology

System configurations

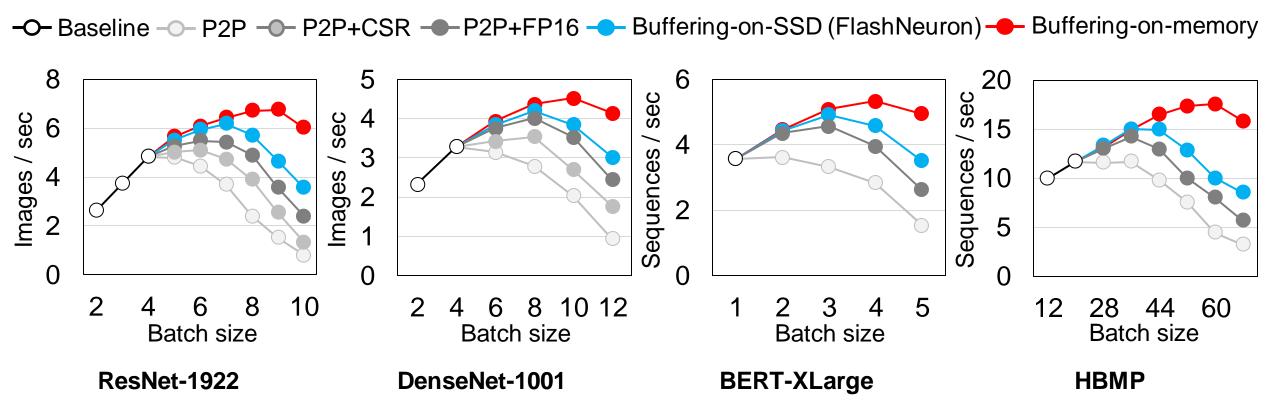
CPU	Intel Xeon Gold 6244 CPU 8 cores @ 3.60GHz	
GPU	NVIDIA Tesla V100 16GB PCIe	
Memory	Samsung DDR4-2666 64GB (32GB x 2)	
Storage	Samsung PM1725b 8TB PCle Gen3 8-lane x 2 (Seq. write: 3.3GB/s, seq. read: 6.3GB/s)	
os	Ubuntu server 18.04.3 LTS	
Python	Version 3.7.3	
PyTorch	Version 1.2	

DNN models and datasets

Network	Dataset	# of layers
ResNet-1922	ImageNet	1922
DenseNet-1001	ImageNet	1001
BERT-XLarge	SQuAD 1.1	48 transformer blocks
НВМР	SciTail	24 hidden layers

Evaluation: Overall Results

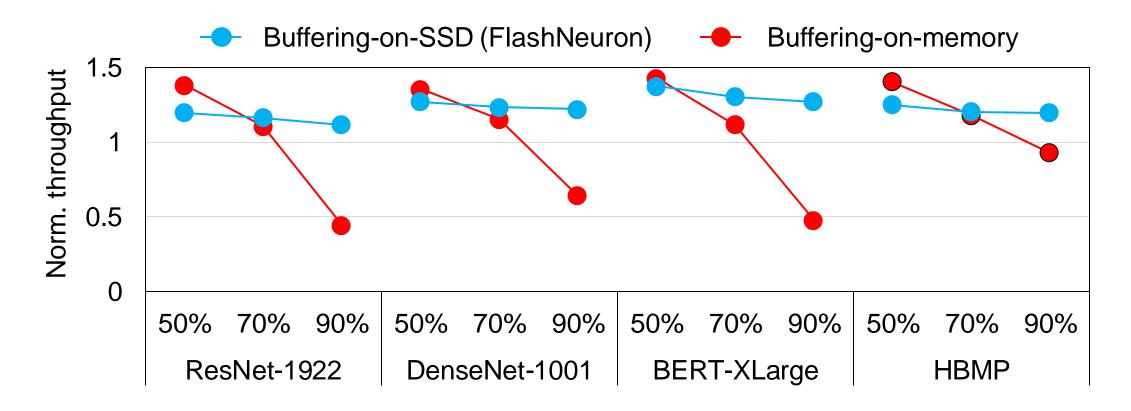
- 12.4x to 14x batch size increment compared to the baseline using GPU memory only
- Up to 37.8% (30.3% on average) training throughput improvement



Evaluation: Co-locating Bandwidth-Intensive Tasks on CPU

Throughput of DNN training on GPU

- Buffering-on-memory: 40.2% throughput degradation when CPU utilizes 90% of the memory BW
- FlashNeuron: 20.2% throughput gain when CPU utilizes 90% of the memory BW



FlashNeuron enables large-batch training of very deep and wide neural networks

- Identify a bandwidth contention problem in recent buffering-on-memory proposal
- Introduce a novel offloading scheduler to fully utilize the scarce SSD write bandwidth
- Implement a lightweight user-space I/O stack customized for DNN training

19th USENIX Conference on File and Storage Technologies (FAST '21)

Thank You!

Source code of FlashNeuron is available at

https://github.com/SNU-ARC/flashneuron.git