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Rise of DNNs

2

• DNNs are the key enabler of today’s AI application

Object detection and classification [1]

[1] Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection,” in CVPR 2016

[2] Image from https://nordicapis.com/5-best-speech-to-text-apis/

Speech-to-text [2]
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Rise of DNNs
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• DNNs are the key enabler of today’s AI application

• Two types of DNN workloads: Training >> Inference

− 3x the computation: forward propagation, backward propagation, and weight update

* Image from https://www.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference.html
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• Data reuse pattern from forward propagation to backward propagation

− Requiring input activation (X), and output error (dY) to calculate input gradient map (dX), weight 

gradient (dW), and finally weight (W)

Data Reuse in DNN Training

6

Simplified data reuse pattern in a layer

Activation (X) Activation (Y)

Error (dX)

Forward pass

Backward pass

Weight 

update

Weight grad. (dW)

Error (dY)

Weight (W)
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Data Reuse in DNN Training

7

Simplified data reuse pattern in a layer

Activation (Y)

Error (dX)
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Activation (X)
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Memory Capacity Wall in DNN Training
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• DRAM footprint increases with (1) deeper neural nets (for accuracy) and (2) larger 

batch size (for training throughput)

GPU memory usage for DNN training
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Overcoming GPU Memory Capacity Wall
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• Previous approach: Buffering-on-memory

− Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)
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• Previous approach: Buffering-on-memory

− Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)
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Overcoming GPU Memory Capacity Wall
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• Previous approach: Buffering-on-memory

− Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

• New solution: Buffering-on-SSD

− With peer-to-peer communication, no host DRAM bandwidth or CPU cycles consumed

GPU
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Buffering-on-memory

CPU task

Buffering-on-SSD with peer-to-peer

communication

NVMe SSD

P2P comm.
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Our Proposal: FlashNeuron

• Key idea: DNN training using a high-performance SSD as a backing store

− Offloading scheduler: Identify a set of tensors to offload and generates an offloading schedule

− Memory manager: Manage offloading/prefetching and tensor allocation/deallocation

− Lightweight user-level I/O stack: Customized stack for p2p communication

• Key results

− Batch size: 12.4x to 14.0x over the maximum allowable batch size on 16GB HBM

− Training throughput improvement: Up to 37.8% (30.3% on average) over the baseline

− Cost efficiency: 35.3x higher cost efficiency assuming the same capacity of DRAM and SSD

13
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System Overview

14

Training model structure
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System Overview
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System Overview
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System Overview
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Offloading Scheduler: Phase 1

• Finding an optimal scheduler for a given target batch size

• Phase 1

− Iteratively select a certain number of tensors from the beginning

18

Spillover: 16MB

4MB 4MB 2MB 2MBTensor Size: 4MB2MB6MB

A B D E F GC

: Low : High: UncompressibleCompression-friendly:

= 24MB

GPU memory: 8MB
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Offloading Scheduler: Phase 1

• Finding an optimal scheduler for a given target batch size

• Phase 1

− Iteratively select a certain number of tensors from the beginning
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Offloading Scheduler: Phase 1

• Finding an optimal scheduler for a given target batch size

• Phase 1

− Iteratively select a certain number of tensors from the beginning
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Offloading Scheduler: Phase 1

• Finding an optimal scheduler for a given target batch size

• Phase 1

− Iteratively select a certain number of tensors from the beginning
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Offloading Scheduler: Phase 2

• Finding an optimal scheduler for a given target batch size

• Phase 1

− Iteratively select a certain number of tensors from the beginning

• Phase 2

− Replace the tensors as offloading candidates with more compression-friendly tensors
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Offloading Scheduler: Phase 2

• Finding an optimal scheduler for a given target batch size

• Phase 1
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Offloading Scheduler: Phase 2

• Finding an optimal scheduler for a given target batch size

• Phase 1

− Iteratively select a certain number of tensors from the beginning

• Phase 2

− Replace the tensors as offloading candidates with more compression-friendly tensors
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Peer-to-peer Direct Storage Access (P2P-DSA)

• Lightweight I/O stack to enable direct tensor offloading/prefetching

• Example walk-through

27
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GPU Base Address
Register (BAR)PCIe Bus

Peer-to-peer Direct Storage Access (P2P-DSA)

• Lightweight I/O stack to enable direct tensor offloading/prefetching

• Example walk-through
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GPU Base Address
Register (BAR)PCIe Bus

• Lightweight I/O stack to enable direct tensor offloading/prefetching

• Example walk-through

Metadata Table

Index DoneLBA
0 True0
1 True2048

Peer-to-peer Direct Storage Access (P2P-DSA)
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• DNN models and datasets• System configurations

Methodology

30

CPU Intel Xeon Gold 6244 CPU 8 cores 

@ 3.60GHz

GPU NVIDIA Tesla V100 16GB PCIe

Memory Samsung DDR4-2666 64GB (32GB x 2)

Storage Samsung PM1725b 8TB PCIe 

Gen3 8-lane x 2

(Seq. write: 3.3GB/s, seq. read: 6.3GB/s)

OS Ubuntu server 18.04.3 LTS

Python Version 3.7.3

PyTorch Version 1.2

Network Dataset # of layers

ResNet-1922 ImageNet 1922

DenseNet-1001 ImageNet 1001

BERT-XLarge SQuAD 1.1 48 transformer blocks

HBMP SciTail 24 hidden layers
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Evaluation: Overall Results
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• 12.4x to 14x batch size increment compared to the baseline using GPU memory only

• Up to 37.8% (30.3% on average) training throughput improvement

Baseline P2P P2P+CSR P2P+FP16 Buffering-on-SSD (FlashNeuron) Buffering-on-memory
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Evaluation: Co-locating Bandwidth-Intensive Tasks on CPU

• Throughput of DNN training on GPU

− Buffering-on-memory: 40.2% throughput degradation when CPU utilizes 90% of the memory BW

− FlashNeuron: 20.2% throughput gain when CPU utilizes 90% of the memory BW

32
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• Identify a bandwidth contention problem in recent buffering-on-memory proposal

• Introduce a novel offloading scheduler to fully utilize the scarce SSD write bandwidth

• Implement a lightweight user-space I/O stack customized for DNN training

Conclusion

33

FlashNeuron enables large-batch training of 

very deep and wide neural networks



Thank You!

Source code of FlashNeuron is available at

https://github.com/SNU-ARC/flashneuron.git

19th USENIX Conference on File and Storage Technologies (FAST ’21)


