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Rise of DNNs

 DNNs are the key enabler of today’s Al application

R | 3

Object detection and classification [ Speech-to-text [

[1] Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection,” in CVPR 2016
[2] Image from https://nordicapis.com/5-best-speech-to-text-apis/
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Rise of DNNs

 DNNs are the key enabler of today’s Al application

« Twotypes of DNNworkloads: Training >> Inference

— 3x the computation: forward propagation, backward propagation, and weight update

Person | Bicycle %
1 % Omm ~f-\ uStrawberryn 3 <?> “Bicyc‘e”
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Strawberry labeled data!

Inference % 5% é%é\j “Bicycle”
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* Image from https:/Mww.intel.com/content/www/us/en/artificial-intelligence/posts/deep-learning-training-and-inference .html
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Rise of DNNs

 DNNs are the key enabler of today’s Al application

« Twotypes of DNNworkloads: Training >> Inference
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Data Reuse in DNN Training

« Datareuse pattern from forward propagation to backward propagation
— Requiring input activation (X), and outputerror (dY) to calculate input gradient map (dX), weight

gradient (dW), and finally weight (W)

[ Activation (X) ] [ Activation (Y) ]

[ Weight (W) ]

Simplified data reuse pattern in a layer
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Data Reuse in DNN Training

« Datareuse pattern from forward propagation to backward propagation
— Requiring input activation (X), and outputerror (dY) to calculate input gradient map (dX), weight

gradient (dW), and finally weight (W)

[ Activation (X) ]

[ Weight (W) ] Weight

I t update

[ Weight grad. (dW) ]ﬁ
[ Error (dX) ]h[ Error (dY) ]

Backward pass

Simplified data reuse pattern in a layer
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Data Reuse in DNN Training

« Datareuse pattern from forward propagation to backward propagation
— Requiring input activation (X), and outputerror (dY) to calculate input gradient map (dX), weight

gradient (dW), and finally weight (W)
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Memory Capacity Wall in DNN Training

- DRAMfootprintincreases with (1) deeper neural nets (for accuracy) and (2) larger

patch size (for training throughput)

O Input + Intermediate result O Weight B Temporary buf.
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GPU memory usage for DNN training
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Overcoming GPU Memory Capacity Wall

 Previous approach: Buffering-on-memory

- Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

DRAM BW 4—» CPU task
contention 4—> Buffering-on-memory
Host DRAM CPU

PCle Switch }

Norm. throughput
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BERT-XLarge
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DenseNet-1001

ResNet-1922

Normalized throughput of buffering-on-memory with
bandwidth-intensive tasks on CPU
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Overcoming GPU Memory Capacity Wall

 Previous approach: Buffering-on-memory

- Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

 New solution: Buffering-on-SSD

Host DRAM CPU 4> CPU task
4—>» Buffering-on-memory

REERERE]

4—> Buffering-on-SSD

NVMe SSD
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Overcoming GPU Memory Capacity Wall

 Previous approach: Buffering-on-memory

- Host DRAM BW contention by BW-intensive task on CPU (e.g., data augmentation)

 New solution: Buffering-on-SSD

— With peer-to-peer communication, no host DRAM bandwidth or CPU cycles consumed

Host DRAM CPU 4> CPU task
4—>» Buffering-on-memory

4—> Buffering-on-SSD with peer-to-peer
communication

NVMe SSD

ﬂ@«—zm_: . ﬁ
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Our Proposal: FlashNeuron

« Keyidea: DNNtraining using a high-performance SSD as a backing store
— Offloading scheduler: Identify a set of tensors to offload and generates an offloading schedule
- Memory manager: Manage offloading/prefetching and tensor allocation/deallocation

— Lightweight user-level I/O stack: Customized stack for p2p communication

« Keyresults
— Batch size: 12.4x to 14.0x over the maximum allowable batch size on 16GB HBM
— Training throughput improvement: Up to 37.8% (30.3% on average) over the baseline

— Cost efficiency: 35.3x higher cost efficiency assuming the same capacity of DRAM and SSD
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System Overview

Training model structure

l

4 DNN Training Framework )
[ Operation Core ] ¢

Offloading
l Scheduler

Memory Manager

Peer-to-peer
Direct Storage Access

User-space NVMe Driver

! 1
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System Overview

Training model structure
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[ Operation Core ] v

Offloading
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System Overview

Training model structure

l

4 DNN Training Framework )
[ Operation Core ]

Tensor Memory
offload/prefetch (de-)allocation
Memory Manager

Offload/prefetch
using tensorindex

Result of
offload/prefetch
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System Overview

Training model structure

l

4 DNN Training Framework )
[ Operation Core ]

\_ /

Offload/prefetch Result of
using tensorindex offload/prefetch

é )
Peer-to-peer

Direct Storage Access

User-space NVMe Driver
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/Ocmd. Completion
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Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size

* Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly:

Tensor Size;:

Spillover: 16MB
GPU memory: 8MB

: Uncompressible

- Low

-: High

' 6MB
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4MB

4MB

AMB 2MB  2MB |=24MB
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Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size

* Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly:
Tensor Size:

Spillover: 10MB
GPU memory: 8MB

eMB

: Uncompressible : Low -:High
'2MB  4MB  4MB  4MB  2MB  2MB |=18MB
. HEH > HEHEH - H
| )
Offloading
tensor A
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Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

Tensor Size: eMB 2MB [ 4MB 4MB AMB 2MB 2MB = 16MB
Spillover: 8MB ﬂ D —-l G ~|
GPU memory: 8MB | >I

Offloading Offloading
tensor A tensor B
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Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

TensorSize:  6MB  2MB  4MB | 4MB  4MB  2MB  2MB |=12MB
Spillover: 4MB ﬂ D —-l G ~|
GPU memory: 8MB | >I

Offloading Offloading Offloading
tensor A tensor B tensor C
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Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

TensorSize:  6MB  2MB  4MB  4MB | 4MB  2MB  2MB |=8MB
G 4
|

Offloading Offloading Offloading Offloading
tensor A tensor B tensor C tensor D

Spillover: OMB
GPU memory: 8MB
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Offloading Scheduler: Phase 1

 Finding an optimal scheduler for a given target batch size
 Phasel

— lteratively select a certain number of tensors from the beginning

Compression-friendly: : Uncompressible : Low -: High

Tensor Size: :
l
Spillover: OMB ~| :
GPU memory: 8MB >|
[

Offloading Offloading Offloading Offloading

tensor A tensor B tensor C tensor D
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Offloading Scheduler: Phase 2

 Finding an optimal scheduler for a given target batch size

 Phasel
— lteratively select a certain number of tensors from the beginning
« Phase?

— Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly: : Uncompressible : Low -: High
Tensor Size:
Spillover: OMB ~|
GPU memory: 8MB
Offloading Offloading Offloading Offloading
tensor A tensor B tensor C tensor D
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Offloading Scheduler: Phase 2

 Finding an optimal scheduler for a given target batch size

 Phasel
— lteratively select a certain number of tensors from the beginning
« Phase?

— Replace the tensors as offloading candidates with more compression-friendly tensors

-: High

Tensor Size: eMB 2MB 4MB 4AMB 2MB

Spillover: OMB ﬂ G ~|

GPU memory: 8MB | >| | |

Offloading Offloading Offloading Offloading
tensor A tensor B tensor C tensor E

Compression-friendly: : Uncompressible : Low

D
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Offloading Scheduler: Phase 2

 Finding an optimal scheduler for a given target batch size

 Phasel
— lteratively select a certain number of tensors from the beginning
« Phase?

— Replace the tensors as offloading candidates with more compression-friendly tensors

Compression-friendly: : Uncompressible : Low -: High

Tensor Size:  6MB 2MB  4MB  4MB = 4MB 2MB:

|
Spillover: OMB B —. D G 1I-|
GPU memory: 8MB | |
Offloading Offloading Offloading Offloading
tensor A tensor C tensorE tensorF
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Peer-to-peer Direct Storage Access (P2P-DSA)

 Lightweight /O stack to enable direct tensor offloading/prefetching

« Example walk-through

€ Index “1” transfer request

v

C

9 Set contiguous LBAs

~
N

LBA Allocator }
Metadata Table
Index | LBA | Done
P2P-DSA Queue 0 0 True
4 1 2048
\‘. .7 /
"~  GPU Base Address
PCle Bus L - - A ' Register (BAR)
s\‘ ‘v\‘v J
GPU
Index O
NVMe SSDio 1 ... 2048 - 8192 Max. LBA
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Peer-to-peer Direct Storage Access (P2P-DSA)

 Lightweight /O stack to enable direct tensor offloading/prefetching

« Example walk-through

~
N

[ LBA Allocator

Metadata Table

O Create and Index | LBA | Done
P2P-DSA Queue  push cmd. 0] 0] True
L/ 1 ]2048
- \ 2/
\‘. ’7 /
ST TT STt  GPU Base Address
PCle|Bus K --—mmmmm oo | Register (BAR)
S, N
O issue cmd. GPU
v
Index O

NVMe SSDio 1 ... 2048 - 8192 - Max. LBA
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Peer-to-peer Direct Storage Access (P2P-DSA)

 Lightweight /O stack to enable direct tensor offloading/prefetching

« Example walk-through

~
N

[ LBA Allocator ]

Metadata Table

Index | LBA | Done
P2P-DSA Queue 0 0 True
.‘ b‘ 1 2048 | True
‘. .1 \& 1/
\ @ Update /

oo n RN  GPU Base Address
e Bus L — - \Register (BAR)

N N

K 'S
v

@ Transfer GPU

Index 0 —» Index 1
NVMe SSDio 1 ... 2048 - 8192 - Max. LBA
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Methodology

« System configurations « DNN models and datasets
CPU Intel Xeon Gold 6244 CPU 8 cores Network Dataset # of layers
@ 3.60GHz ResNet-1922 | ImageNet | 1922
GPU NVIDIA Tesla V100 16GB PCle DenseNet-1001 | ImageNet | 1001
Memory | Samsung DDR4-2666 64GB (32GB x 2) BERT-XLarge | SQUAD 1.1 | 48 transformer blocks
Storage | Samsung PM1725b 8TB PCle HBMP SciTail 24 hidden layers

Gen3 8-lane x 2
(Seq. write: 3.3GB/s, seq. read: 6.3GB/s)

oS Ubuntu server 18.04.3 LTS
Python | Version 3.7.3

PyTorch | Version 1.2
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Evaluation: Overall Results

« 12.4xto 14x batch sizeincrement compared to the baselineusing GPU memory only

« Upto 37.8% (30.3% on average) training throughput improvement

-O- Baseline P2P —0O- P2P+CSR -@-P2P+FP16 -@- Buffering-on-SSD (FlashNeuron) -@- Buffering-on-memory
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Evaluation: Co-locating Bandwidth-Intensive Tasks on CPU

 Throughput of DNN training on GPU
— Buffering-on-memory: 40.2% throughput degradation when CPU utilizes 90% of the memory BW
— FlashNeuron: 20.2% throughput gain when CPU utilizes 90% of the memory BW

-@®- Buffering-on-SSD (FlashNeuron)  -@- Buffering-on-memory
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Conclusion

FlashNeuron enables large-batch training of

. very deep and wide neural networks

« ldentifyabandwidth contention problem in recent buffering-on-memory proposal

* Introducea novel offloading scheduler to fully utilize the scarce SSD write bandwidth

« Implementalightweightuser-space |/O stack customized for DNN training

USENIX FAST ’21, FlashNeuron: SSD-Enabled Large-Batch Training on Very Deep Neural Networks @ ARC Lab, Seoul National University | 33



19 USENIX Conference on File and Storage Technologies (FAST '21)

Thank You!

Source code of FlashNeuron i1s available at

https://github.com/SNU-ARC/flashneuron.git



